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Abstract

In the generalized expected utility framework, the multiplicative relationship be-
tween preferences and beliefs complicates the identification of risk preferences. In ex-
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based method for expressing uncertainty in the individual’s decision weight as un-
certainty in their inferred risk aversion coefficient. We implement this procedure on
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1 Introduction

Given the uncertainty over outcomes as diverse as weather, finance, technology, and health,

risk is more rule than exception in the microeconomics of decision-making. Yet, decision-

making under risk and uncertainty is still considered a sub-field of microeconomics. Inte-

gration of individual measures of risk tolerance, however, has started to become standard

practice in the empirical analysis of individual decision-making in a variety of domains, in-

cluding (but not limited to) natural hazard mitigation (Petrolia et al., 2013, 2015), marriage

and child-bearing (Schmidt, 2008), migration decisions (Jaeger et al., 2010), and technology

adoption (Liu, 2013). Thus, many micro-economic researchers have taken an interest in be-

ing able to elicit robust measures of individual proclivity to take risks and to employ those

measures in empirical analysis.

Identifying individual preferences over risky outcomes, however, is non-trivial and fraught

with challenges, prompting a literature focused on discerning ways to robustly infer individual

risk preferences with instruments that are simple and easy for respondents to understand.

The existing literature on the measurement of risk preferences can largely be grouped into

two distinct categories. The first uses simple queries to very bluntly gauge an individual’s

degree of risk tolerance (i.e. “How willing are you to take risks, in general?”) (Dohmen

et al., 2011). From a subject’s perspective, this instrument may be easy to respond to and

can provide for internal comparisons across risk domains, but the measures have limited

construct and external validity; they generally provide only a very vague understanding of

an individual’s risk-taking behavior, are difficult to interpret, and may not be comparable

across subjects.

The second approach entails using economic theory to structurally model an individual’s

decision over risky outcomes. Observing such choices can permit inference of individual
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structural risk preference parameters, albeit under the presumptions that the theoretical

model sufficiently mimics the individuals’ decision-making process and that the domain of

inference is relevant for the desired range of empirical analysis. This method is advantageous

as it can produce risk preference parameters that map directly to existing economic theory.

One way to implement this method is to take advantage of existing observational data

in which an individual has made a decision that involves a naturally occurring stochastic

outcome (see Barseghyan et al. (2018) for a review). Yet, finding requisite data for this

approach can be quite difficult, engendering the popularity of using experimental methods

to elicit risk preferences in applied economics research (Holt and Laury, 2002; Eckle and

Grossman, 2002; Charness et al., 2013).

Assessing risk preferences in an experimental setting provides researchers with considerable

latitude in describing uncertain outcomes and the context in which resolution will occur. It

is well recognized, however, that the laboratory environment is not without its drawbacks.

One concern with lab-based results is that the environment is often sterile, implying a lack

of real work context which can limit generalization to everyday behavior.1 This critique

has motivated the use of field experiments, or “lab in the field” studies, which attempt to

maintain the control of the lab while achieving greater domain specificity and generalizability

(Levitt and List, 2007a,b, 2008).

Although field experiments do indeed offer some advantages over other methods for ob-

taining measures of risk preference, they also introduce a unique set of challenges. Most

experimental studies that attempt to recover structural risk preference parameters employ

the assumption of a generalized expected utility model; this presumes a functional repre-

sentation that maintains a multiplicative relationship between the probability of outcomes

1We note that this is not universally viewed as a limitation and could be an advantage depending on the
research question at hand (Falk and Heckman, 2009)
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(also known as “beliefs” or “decision weights”) and preferences (i.e. utility as a function

of consumption and risk preferences). This formulation creates a formidable challenge for

the identification of risk preferences, as differences in observed behavior can be explained

by multiple combinations of beliefs and preferences - a conundrum that has been well doc-

umented and discussed in the existing literature (Luce and Krantz, 1971; Fishburn, 1973;

Karni, 2007; Lu, 2019). Identification in cross-sectional data is usually not possible without

strong (and arguably unrealistic) sets of assumptions.2

Consequently, using experiments to obtain robust metrics of individual risk preferences,

either in the lab or through field experiments, is dependent on knowing the precise decision

weight that an individual uses when choosing between risky prospects. In a stylized labora-

tory environment, it is plausible to assume that individuals employ decision weights provided

by the researcher.3 In a field setting, however, where elicitation is usually conducted in a

domain-specific context,4 research participants’ perceptions of likelihood are considerably

more opaque, invoking subjective assessment of likelihood (which may be based on past ex-

perience or expectations of future outcomes in idiosyncratic ways) and assessment of unique

domains that could invoke considerable heterogeneity; this implies a potential for variation

in subjective decision weights that could be very difficult to control for in microeconomic

2Savage (1954)’s original formulation of subjective expected utility achieves identification by specifying
a preference relation that is independent of the underlying state of nature along with an infinite state
space; these are restrictive assumptions that rule out most interesting cases that are applicable to observed
behavior. Following Savage, there have been attempts to incorporate state-dependent preferences into the
subjective expected utility framework, yet doing so still requires restrictive assumptions (Karni, 2014).

3It is generally accepted, however, that individuals likely engage in some form of probability weighting (or
apply a more general probability “distortion”) as the concept is a key component of many modern models
of decision making under risk and uncertainty (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992; Quiggin, 1982) and has been shown to be a good way to improve structural model fit in field settings
(Barseghyan et al., 2013; Collier et al., 2020). Thus, this assumption may not be as valid as conventional
approaches maintain.

4Studies invoking domain specificity are generally considered reasonable and appropriate since individual
risk preferences are not guaranteed to generalize across domains (Dohmen et al., 2011; Einav et al., 2012).
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analysis. For example, if a researcher was eliciting risk preferences in the domain of personal

finance, a research subject’s past experience with investing may influence their perceived

decision weights used in the experiment. If the researcher informs the participant that eq-

uities generally return 7% per year after inflation, but the research participant had recently

lost substantial money in the stock market, their recent experience may lead them to use

decision weights that differ from those provided by the researcher. Thus, failing to account

for the research participant’s alternative decision weight would lead to incorrect inference

concerning their proclivity for taking financial risk.

The multiplicative relationship between beliefs and preferences in the generalized expected

utility framework implies the potential for multiple equivalencies among unobserved factors

influencing decision weights and attitudes towards risk. Inherently, there is uncertainty in

whether a respondent’s decision weight matches the objective probability in any experimental

setting (with the issue being particularly prominent in domain-specific field experiments).

Thus, when respondents are assumed to use objective probabilities for their decision weights

(a common assumption in the literature), an additional source of uncertainty is introduced

that is not typically acknowledged when making inferences about the individual attitudes

towards risk. As such, developing techniques that account for differences in decision weights

in experimental elicitation of risk preferences is an important step forward for obtaining

robust characterizations of individual decision-making under risk and uncertainty.

The purpose of this study is to present a method for eliciting domain-relevant risk prefer-

ences that controls for participant perceptions of probability that differ from those reported

in the elicitation instrument. Our particular domain of interest is natural hazards, and our

elicitation instrument utilizes future weather outcomes to introduce uncertainty. Respon-

dents are permitted to choose among four weather-based lotteries, with increasing mean and
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variance. After indicating their preferred lottery (including a pass option, which entails for-

going gamble of their incentive payment), they are asked to report their personal assessment

of the likelihood of weather outcomes (e.g. more or less likely than indicated by historical

data). This information then gets incorporated into a Monte Carlo procedure that adjusts

the range of the coefficient of relative risk aversion (CRRA) interval that can be inferred

by each respondent’s choice. This approach offers a substantial improvement over other risk

preference elicitation methods that are typically used, since uncertainty in the individuals’

decision weight is no longer ignored but instead conveyed as uncertainty in the implied risk

preference metric. We apply this approach to survey data from coastal homeowners, and we

show that incorporating the Monte Carlo adjusted risk preference coefficients into a reduced-

form analysis of flood insurance purchase improves model fit compared to when uncertainty

in decision weights is ignored. We also find larger semi-elasticities for risk preference when

we employ the adjustment, suggesting downward bias in empirical analysis when decision

weight uncertainty is unaccounted for.

The rest of this paper is organized as follows. Section 2 describes our data collection

efforts and provides descriptive statistics. Section 3 provides a theoretical background on

the identification problem present in the experimental elicitation of risk preferences. Section

4 outlines our empirical approach for both adjustment of implied risk preference intervals

and our reduced-form analysis of flood insurance. Section 5 presents our results. Section 6

provides a discussion of the results, and section 7 concludes.

2 Survey Design and Data Collection

Household-level data for our analysis were gathered via mail survey in the fall of 2018 in

Glynn County, GA. The overarching goal of the survey was to gather a rich profile of home-
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owners’ expectations, beliefs, and perceptions related to coastal habitation with an explicit

focus on climate change induced risks and adaptation policies. An initial sample of 1,914

recent home buyers (purchased in 2016 or 2017) was targeted in early October. Participation

was incentivized by offering $5 cash payments for returned surveys. Respondents had the

option to earn more or less money, however, through the selection of a weather gamble. This

instrument is primarily based on Eckle and Grossman (2002), in which participants are asked

to select their most preferred choice from a menu of lotteries. Similarly, our respondents were

asked to choose between keeping their $5 incentive payment or gambling their incentive pay-

ment by selecting one of four alternative lotteries. Notably, we use weather as a naturally

occurring stochastic process to define lottery payoffs. This addresses the issue of domain

specificity of risk preferences by framing risk in our domain of interest (natural hazard risk).

An additional benefit of this method is that the stochastic process is completely transparent

and outcomes are verifiable by the research participant. This alleviates any concerns related

to distrust of the researchers or suspicions about the actual randomness of lottery outcomes.

The weather outcomes were specified for occurrence in November of 2018; the survey had

a response rate of 13.9% (266 returned surveys during October). Figure 1 displays the risk

preference question as it was presented in the survey. Respondents were first informed of

the exact time frame and location that weather outcomes would be recorded. The question

then reports objective weather probabilities for each weather event based on historical data.

Finally, respondents were presented with the lottery choices (along with the option to keep

their incentive payment and not engage in a lottery).

After the risk preference instrument, respondents were presented with a series of debrief-

ing questions where they were asked to indicate if they agreed with the objective weather

probabilities reported in the instrument. Figure 2 displays the debriefing questions as they
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were presented in the survey. For each weather probability displayed in the risk preference

instrument, respondents could indicate that they thought the probability based on historical

data was “About right”, “slightly too (low/high)”, or “much too (low/high)”

2.1 Descriptive Statistics

Table 1 reports descriptive statistics for all variables used in our analysis. Sixty-two percent

of survey respondents indicated having a flood insurance policy on their coastal residence.

Flood insurance premiums were calculated for each individual by using the national flood

insurance program’s (NFIP) flood insurance rate manual along with each respondent’s unique

home characteristics. Full coverage and a deductible of $1000 were assumed to calculate each

homeowners’ annual NFIP premium. In reality, respondents may not choose full coverage

and may choose a different deductible. This calculated premium, however, still captures the

variation in price that individuals face when looking to purchase flood insurance, and thus

it serves its purpose of controlling for price in our reduced-form analysis. The mean value of

this calculated annual premium was $1,426.

Household income was elicited through an ordered categorical scale of eight intervals rang-

ing from “less than $35,000” up to “more than $250,000”. The lowest interval is coded at

$30,000 while the top income interval is coded using the method of Hout (2004). This in-

volves handling unbounded intervals through extrapolation by applying frequencies observed

in the last and penultimate income intervals to a Pareto distribution. Doing so suggests the

top income interval should be coded at $496,000. All other income intervals are coded at

their midpoint which suggests a mean household income of $171,000. Respondents were

asked to indicate what proportion of their net worth was represented by the equity they

have in their Glynn County residence. Responses were elicited in an ordered categorical
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form ranging from “0%-10 up to “80% - 100%”. Coding these intervals at their midpoint

suggests the average respondent had 33% of their wealth represented by their coastal home

equity.

Subjective expectations of a major hurricane strike were elicited by asking respondents

how many major (Category 3 or higher) hurricanes they expected to pass within 30 miles

of the county over the next 50 years. These responses were then mapped to an annualized

probability, the mean of which was 0.19.5 Expected personal home damage from a major

hurricane strike (passing within 30 miles of the county) as a share of total structure value

was elicited in 20 percentage point increments (i.e. 0% - 20% up to 80% - 100%). Coding

these ordinal interval responses at their midpoint suggests the average respondent expects

damage equivalent to 43% of their home structure value. Individual expectations of disaster

aid have been shown to be an important determinant of flood insurance demand and are

thus included in our reduced-form analysis (Landry et al., 2021). Thirty-five percent of

respondents believed they would be eligible for government issued disaster aid following a

natural disaster declaration. Fifteen percent of our sample indicated they had personally

sustained flood damage to their home at least once in the past. Twenty-six percent of

respondents’ homes were located in a special flood hazard area (SFHA)6 and the average

home was located approximately 4.12 km from the coast.

Age was elicited with a series of ordinal responses which suggest a mean age of 55 when

responses were coded at their midpoint. Sixty-seven percent of respondents indicated having

at least a bachelor’s degree or higher. Feelings of worry related to home loss from a natural

disaster were elicited on a 4-point Likert scale with 4 being the most worried. Responses

5While this probability appears high relative to historical records, Glynn County was recently adversely
affected by two hurricanes, which may have heightened risk perceptions (Bin and Landry, 2013; Atreya
et al., 2013)

6defined as having at least a 1% change of flooding per annum
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were converted to a binary variable by coding responses of 3 or 4 as “being worried”. This

coding suggests 46 percent of responses worried about the loss of their home. Finally, to

control for coastal experience, respondents were asked how long they had been living on the

coast. Forty-one percent indicated being “relatively new to the coast”

Panel B of table 1 reports results to debriefing questions that gauge subjective perceptions

of the accuracy of objective weather probabilities. Overall, only 22 percent of respondents

agreed with all historical weather probabilities reported. The mean responses for lotteries

one and two were 2.82 and 2.83, respectively, indicating an aggregate opinion that the

probabilities associate with these weather outcomes (average rainfall and low temperature

in November) were too low. On the other hand, the mean responses for lotteries three and

four were 3.21 and 3.24, respectively, indicating an aggregate perspective that these weather

outcome probabilities (extreme rainfall and high temperature in November) were too high.7

3 Theoretical Background

Expected utility and most of its generalizations maintain a multiplicative structure among

beliefs and preferences that guides choice among risky outcomes, often defined as “prospects”

over uncertain states of the world (e.g. occurrence of hurricane v. no hurricane). Optimizing

EU entails the choice of the prospect that generates the highest level of expected utility.

Thus, given two risky prospects, an EU optimizer picks choice A (e.g. purchase of flood

insurance) over choice B (e.g. foregoing flood insurance) if the following is true:

7Interestingly, these responses accord with the predictions of prospect theory, which proposes a general
tendency to overweight small probabilities and under-weight larger probabilities (Kahneman and Tversky,
1979).
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E[cA] =
∑
k

pku(xk(cA), ρ) >
∑
k

pku(xk(cB), ρ) = E[cB] (1)

where k ∈ K represents a singular state of the world (from the set of all possible states of

the world, K), pk represents the probability of state k, and xk represents the consumptive

or monetary payoff associated with state k, which is conditional on the agent’s choice, c ∈

{cA, cB}. The utility function u(.) maps monetary payoffs into individual satisfaction, with

the shape of the utility function governed by the parameter ρ, characterizing the agent’s risk

preferences.

If pk and xk are known for all k, the range of risk preference parameters that are consistent

with a given functional form for u(.) and an observed choice among prospects can be iden-

tified (Eckel and Grossman, 2008; Charness et al., 2013). If pk (or xk) is unknown, however,

inequality 1 can no longer be solved for ρ given that it contains two unknowns. Similarly,

if pk (for any or all k) is not known with certainty (due, e.g., to subjective probabilities or

measurement error), then the corresponding values of ρ that would result in a particular

observed behavior cannot be recovered with certainty.

For example, consider the following pair of lotteries that an agent must choose among:

Lottery A: 50% chance of receiving $10; 50% chance of receiving $20 (2)

Lottery B: 50% chance of receiving $5; 50% chance of receiving $25 (3)

While each lottery has the same expected value, a risk averse EU maximizer would prefer

the lottery with the lower variance. Assuming risk aversion is consistent with CRRA utility,8

8Where CRRA utility over wealth, x, is defined as: u(x; ρ) =

{
x(1−ρ)

1−ρ ρ 6= 1

ln(x) ρ = 1
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the choice of lottery A over Lottery B implies:

(
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+
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)
−
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1
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)
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From an empirical perspective, we can infer from inequality (5) that choosing lottery A

implies a risk preference parameter greater than 0 (indicating risk aversion). On the other

hand, a choice of lottery B implies a risk parameter less than or equal to 0 (indicating risk-

neutral or risk-seeking preferences). Moreover, if we have additional data from a menu of

individual lottery choices (e.g. selection of a preferred lottery or a multiple-price list (MPL)

(Charness et al., 2013)), we can deduce further bounds on risk preference parameters. This

general approach has been used both in the laboratory (Binswanger, 1980, 1981; Holt and

Laury, 2002; Eckle and Grossman, 2002) and field (Tanaka et al., 2010; Liu, 2013) to assess

individual risk preferences.

Now, suppose that the probabilities in lottery A are subject to some ambiguity, ε, such

that lottery A is redefined as follows:

Lottery A: (50% + ε) chance of receiving $10 ; (50%− ε) chance of receiving $20 (6)

meaning inequality (5) is now:

(
1

2
+ ε

)(
$10(1−ρ)

(1− ρ)

)
+

(
1

2
− ε
)(

$20(1−ρ)

(1− ρ)

)
−
(

1

2

)(
$5(1−ρ)

(1− ρ)

)
−
(

1

2

)(
$25(1−ρ)

(1− ρ)

)
> 0 (7)

The level of risk aversion, ρ, that explains the choice of lottery A over lottery B is now
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dependent on the value of ε. Figure 3 plots inequality (7) for various levels of ε, demonstrating

that the range of ρ values that satisfy inequality (7) (i.e any value of ρ where the function is

positive) can be quite different for relatively small values of ε. For example, when ε = −0.05

(e.g. an agent who believes the probabilities in lottery A to be 45%/55% rather than equal

odds.), the minimum value of ρ necessary to reconcile an agent choosing lottery A over

lottery B drops from 0 to -0.18 meaning the conclusion that only risk-averse individuals

prefer lottery A is no longer correct.

Overall, unless the probabilities associated with an agent’s decision are known with cer-

tainty (i.e. ε can be confirmed to be zero), any derived risk preference measures are prone to

errors that are typically not expressed in conventional risk preference elicitation calculations.

In the next section, we focus on using the debriefing responses outlined in section 2 (Figure

2) to identify when ε differs from zero. We then use that information to widen (or narrow)

the risk preference parameter interval that can be implied by the observed choice in the risk

preference instrument and in effect produce a final characterization of risk preferences that

accounts for uncertainty in the decision weights being used by each individual.

4 Methods

Our empirical methods address two primary research objectives. The first task is to adjust

the elicited risk preference parameters to reflect uncertainty in the individuals’ decision

weights. The second task is to validate this procedure by incorporating the adjusted risk

preference parameters into reduced-form regression analysis to assess whether they offer an

improvement in model fit for a domain-relevant decision. We describe the details of each

task in turn.
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4.1 Monte-Carlo Procedure

The example presented in section 3 demonstrates how a single biased probability in a binary

lottery among two competing risky prospects can alter the range of risk preference implied

by an observed choice. This is the simplest possible scenario; in practice, most risk pref-

erence assessment instruments typically involve at least several competing risky prospects

all of which may be subject to uncertainty in the decision weights used by the subject. As

such, most situations where observing an agent’s choice is likely to be useful will be subject

to the same identification challenge highlighted in section 3, but with greater complexity.

The multitude of possible combinations of decision weights and preference parameters that

could underlie risky choices limits application of analytical methods, but opens the door

for numerical approaches. Our proposed Monte-Carlo procedure for modifying the inferred

CRRA interval utilizes the following steps:

1. Check if the respondent indicated disagreement with any of the probabilities reported

in the instrument. If the respondent agreed with the accuracy of all objective proba-

bilities, no adjustments are made. If at least one disagreement exists, proceed to the

next step.

2. For any subjective probability that differs from the historical likelihood, randomly

perturb the decision weights in accord with the agent’s subjective assessment of the

likelihood of that particular weather outcome. The size of the perturbation is defined

by two parameters θs (for “slight”) and θm (for “much”) , which are continuous random

variables defined by the following uniform distributions:

θs ∼ unif(0, ωs)
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θm ∼ unif(ωs, ωm)

θs is the adjustment for respondents that thought the historical probability was “slightly”

off (where θ is subtracted from the historical probability if deemed “slightly too high”

and added if “slightly too low”), while θm is the adjustment for indication of “much”

difference among subjective and objective probabilities (as indicated in table 2). The

bounds of the uniform distributions are initially set at a ωs = 0.05 and ωm = 0.1 (rep-

resented by CRRA (5,10) in table 1), but take on different values during sensitivity

analysis and model assessment. For “slightly” off, we use θs = 0.05, 0.1, 0.2, 0.3, and

0.4, while for “much” difference, we use θm = 0.1, 0.2, 0.4, 0.6, and 0.8, respectively.

(This procedure reflects the inherent uncertainty in modeling “slightly” and “much”

in the context of subjective assessment of likelihood).

3. The perturbed lottery probabilities are then used to calculate the implied CRRA inter-

val that is consistent with the respondent’s lottery choice, assuming that the perturbed

lottery probabilities were the decision weights the respondent used when evaluating the

lotteries.

4. Repeat steps 2 and 3 N times to generate N individual implied CRRA intervals all of

which were derived using randomly drawn perturbation sizes (θs and θm)

5. Take the maximum of the N upper bounds and the minimum of the N lower bounds

for each subject in the analysis. These values form the new “adjusted” implied CRRA

interval for each individual.

The procedure described here will produce implicit CRRA intervals that contain the indi-

vidual’s true CRRA value as long as the bounds of the uniform distributions that the theta
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parameters are drawn from are sufficiently large. For example, if a respondent thought the

probability of a particularly lottery was “slightly too low”, which to them meant 7 percent

too low, but θs ∼ unif(0, .05) (i.e. at most the decision weight is perturbed by 5 percent)

our procedure is not guaranteed to produce an interval that contains the true CRRA values.

By varying the values of ωs and ωm and conducting a comparative model fit assessment, we

allow the data to indicate the appropriate bounds for adjustment.

Panel C of table 1 reports summary statistics for original and adjusted CRRA intervals

based on objective and subjective likelihood assessment, respectively, and using various

interval sizes (ωs and ωm) for the theta parameters. The numbers in parentheses indicate the

proportional probability adjustment for ωs (first number) and ωm (second number).9 Each

individual CRRA parameter is estimated as the midpoint of the resulting interval. Overall,

the mean value of the CRRA coefficients is consistent before and after the adjustment,

regardless of the size of the interval that the theta parameters are drawn from. Wider theta

parameter distributions, however, tend to produce CRRA values with wider variance. This

is also apparent in figure 4 which plots histograms of the original and adjusted CRRA values.

4.2 Reduced-Form Regression Analysis

To validate the effectiveness of the risk-preference adjustment procedure, we conduct a

reduced-form analysis of flood insurance purchase and assess overall model fit before and

after the coefficients have been adjusted using the Monte-Carlo procedure described above.

Our reduced-form analysis entails the estimation of standard probit models on the binary de-

cision to hold a flood insurance policy. As noted previously, the distribution from which the

theta parameters should be drawn from during the Monte-Carlo procedure is ad hoc. Thus,

9For example “CRRA (10,20)” indicates that this CRRA variable was adjusted by drawing θs from (0,0.1)
[ωs = 0.1] and θm from (0.1,0.2) [ωm = 0.2].
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we conduct a sensitivity analysis with our reduced-form models by estimating a probit model

for each of the CRRA variables reported in table 1, panel C.

4.3 Risk Perception Heterogeneity

For many of the respondents in our sample, the adjustment procedure has no effect on their

implied CRRA interval. This occurs due to individuals indicating they agreed with all or

some10 of the objective probabilities or indicating disagreements in objective probabilities in

multiple lotteries that tend to cancel each other out.11 Thus, modeling improvements will

be driven by assessments of respondents whose CRRA values were altered the most. We

investigate this by estimating an additional series of reduced-form regression that exclude

individuals that had minute differences between their original CRRA value (that ignores

uncertainty in decision weights) and the adjusted CRRA value that uses the largest theta

parameter distributions (CRRA (40,80)). We exclude individuals from this specification that

had CRRA values that differed by less than 0.05.

5 Results

Table 3 reports probit regression coefficients for the effect of the adjusted and un-adjusted

CRRA values (among other covariates) on flood insurance status. Regression coefficients are

10For example, a disagreement in the probability attached to lottery 4 has little to no effect in the implied
CRRA interval if the respondent’s decision was primarily between choosing lottery 1 or 2

11For example, consider an agent who has biased perceptions of the probabilities attached to the events
in our risk preference instrument such that they believed lottery 2 to have the probability distribution
0.22/0.78 (as opposed to 0.225/0.775), lottery 3 to have the probability distribution 0.16/0.84 (as opposed
to 0.125/0.875), and lottery 4 to have the probability distribution 0.03/0.97 (as opposed to 0.025/0.975).
Deriving this agent’s implied CRRA range, given their most preferred lottery, would result in the exact
same CRRA range regardless of if subjective or objective probabilities were used in the derivation. This
is but one example of the many other possible combinations of biased probabilities that would result in
exactly the same or arbitrarily similar implied CRRA ranges.
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consistent with what economic theory would suggest. Individuals whose home represents a

greater proportion of their net worth, those who expected more home damage from a hur-

ricane, residents in flood zones, and those with a college education were all more likely to

have a flood insurance policy. The focus of our results, however, is on potential improve-

ments associated with adjusting risk preference coefficients. If our Monte-Carlo procedure is

effective in addressing errors in the measurement of risk perception, then we would expect

better evidence of internal validity in the reduced-form insurance regression.

Log-likelihood, AIC, and BIC values each suggest that all of the models that make use

of adjusted risk coefficients have better model fit compared to the base model (that does

not). In addition to raw AIC values, we also report normalized model likelihoods (or “Akaike

weights”) which can be interpreted as the probability that the given model is the best among

the competing models under consideration (Burnham and Anderson, 2004).12 This metric

suggests that our base model with un-adjusted risk coefficients has only a 9.5% probability

of being the best model; thus there is a 90.5% chance that the base model is not the best

model, suggesting the use of the adjusted risk coefficients generally leads to a model that is a

better descriptor of our data. Similarly, we present an adjustment to the raw BIC values by

calculating and reporting Bayes’ factors. In this instance, Bayes’ factor is interpreted as the

relative likelihood of two competing models (i.e. our base model against each model with

adjusted risk coefficients). Bayes’ factors for each model in table 3 range from 1.46 up to

2.56,13 which suggests the best fitting model is 2.56 times more likely to be the true model

given the data when compared to the base model.

Admittedly, the evidence presented in table 3 in favor of using our proposed Monte-Carlo

12“best” here refers to the model that minimizes Kullback-Leibler (K-L) information loss
13excluding the Bayes’ factor for the base model which is not applicable since it is interpreted as the relative

likelihood of the base model against itself
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procedure is not overwhelmingly strong depending on which model fit metric is being used.

The normalized AIC weights suggest the base model with un-adjusted risk coefficients only

has a 9.5% probability of being the best model among those presented in the table which is

quite encouraging. If the BIC and Bayes factor are the metrics of choice, however, the best

Bayes factor of 2.56 is considered evidence for the adjusted model that is “Weak” according to

(Raftery, 1995) or “Anecdotal” according to (Jeffreys, 1961). Although, as noted previously,

improvements in model fit are likely to be concentrated among individuals that had their

CRRA values altered the most by the Monte-Carlo procedure.

Table 4 reports the same regressions as table 3 but with the sub-sample of observations

that exhibited substantial differences in their implied risk coefficient after the Monte-Carlo

procedure. The improvements in model fit from adjusting the risk coefficients are much

more apparent in this specification. In accord with regressions run on the full sample, all

specifications suggest elicited CRRA values (unadjusted and adjusted) are significant deter-

minants of flood insurance status. Normalized AIC weights, however, suggest substantial

improvements in model fit between the base model and models with adjusted CRRA values.

AIC weights indicated a 1.2% chance of the base model being the best model, whereas the

model presented in the 5th column of the table (CRRA(30, 60)) has a 64% probability of

being the best. Bayes’ factors range from 2.3 to 55.8. Raftery (1995) describes a Bayes’

factor of 56 as being evidence of the alternative model that is “strong”, whereas Jeffreys

(1961) describes the evidence as “very strong”.

6 Discussion

Identification challenges associated with simultaneous uncertainty in both decision weights

and risk preferences have been recognized for some time (Savage, 1954), but uncertainty in
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decision weights has largely been ignored during experimental elicitation of risk preferences.

The bulk of existing literature is focused on laboratory environments, so the presumption

of known decision weights could be more defensible in this context. The emerging literature

that attempts to characterize risk preferences in non-laboratory settings, however, has been

forced to contend with the fact that using objective probabilities as decision weights may not

be a justifiable assumption (Barseghyan et al., 2018). To our knowledge, the methodology

presented here is the first attempt to account for uncertainty in decision weights during

experimental elicitation of risk preferences; the approach should be easily implemented in

other field contexts.

Our results suggest that ignoring uncertainty in individual decision weights (equivalent

to assuming that individuals act on objective probabilities) leads to relatively poor model

fit for reduced-form models utilizing elicited risk preferences. Our Monte-Carlo procedure

offers a simple approach to adjust perceived bounds on the likelihood of context-relevant

outcomes using simple Likert scale response to assess the qualitative difference among his-

torical, objective likelihood estimates and expressed, subjective estimates (that could reflect

knowledge and beliefs about environmental change). While the adjustment procedure offers

modest improvements in regression analysis in the full sample, we find substantial impacts

when we focus on the sub-sample of respondents for which the correction has a substantial

effect on subjective likelihoods relative to the historical data. Bayes’ factors for these models

suggest they are between 2.3 and 56 times more likely to be the true model relative to the

base model. Thus, the degree to which accounting for uncertainty in decision weights can

be expected to improve model fit is largely dependent on how much subjective beliefs differ

from the objective probabilities, which are likely to vary with sample and context.

We now turn to the economic significance of the Monte Carlo adjustment procedure. The

20



footers of both tables 3 and 4 report average marginal effects (expressed as semi-elasticities)

of the risk preference variable in each regression. Table 3 indicates that in the base model

(column 1), a 1 percent increase in an individual’s CRRA value increases the probability of

purchasing flood insurance by 9.6 percent, whereas the best fitting model (column 4) suggests

an 11.3 percent increase in probability. In other words, if the best fitting model is presumed

to be the true model, then the model that ignores uncertainty in decision weights understates

the effect of risk preference on flood insurance purchase decisions by approximately 15%. For

our subset of the population most affected by the CRRA adjustment procedure (table 4),

this bias is more pronounced. The base model suggests the base model understates the

effect of risk preferences by approximately 25%. Overall, our results suggest that ignoring

uncertainty in decision weights is not prudent and may very well lead to biased inference.

Nonetheless, the procedure proposed here has several limitations.

Our debriefing questions, which allow respondents to indicate disagreement in the objective

lottery probabilities attached to each lottery, are based on a simple 5-point Likert scales.

The simplicity is advantageous, as it increases the likelihood that a given respondent will

understand and answer the questions. The downside is that only a crude approximation of the

respondent’s true decision weight is revealed by their answer. Ideally, precise decision weights

could be elicited through an open-ended response which would reduce uncertainty in the

overall implied risk preference coefficient. Open-ended responses,h owever, are accompanied

by their own set of challenges. For example, there is often a tendency for respondents to

round open-ended answers (Manski and Molinari, 2010); Dominitz and Manski (1997) find

that survey respondents tend to report probabilistic expectations in 1 percent increments

near the bounds of the unit interval, but tend to round in increments of 5 percent elsewhere.

In addition, there is evidence that certain stated probabilities (i.e. “50-50”) may be more
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reflective of an individual’s epistemic uncertainty rather than expressions of true beliefs

about the probability of the event in question (de Bruin et al., 2002). Thus, it is not

obvious that using open-ended responses would yield more accurate implied risk coefficient

estimates. Exploring the implications of using alternative subjective probability elicitation

methodologies remains an important avenue for future research.

One concern with our analysis is that our small sample size (particularly for the regres-

sions in table 4) may mean comparing models based on information criteria derived from

log-likelihoods may be suspect due to the asymptotic distributional assumptions being in-

valid. To mitigate these concerns we turn to an alternative estimator: penalized maximum

likelihood (PML). This method, proposed by (Firth, 1993), makes use of a log-likelihood

function that has been modified to include an additive penalty term, defined as the square

root of of the determinant of the information matrix.14 This approach has been shown to

lower bias and variance compared to standard maximum likelihood estimation (Copas, 1988;

Firth, 1993). One implication of this is that a logit model estimated with PML tends to have

much better small sample properties than the same model estimated via standard maximum

likelihood. Intuitively, the penalty term
√
|I(β)|, which is equivalent to Jeffreys (1946)’s

prior, shifts the score function to correct for bias in proportion to the researcher’s level of

“ignorance”.15 Using a series of Monte-Carlo simulations, Rainey and McCaskey (2021) show

that even with only 30 observations (used to estimate 9 parameters), PML estimates only

exhibited bias of 6 percent compared to 69 percent bias present in the standard logit coeffi-

cients. We re-estimate our reduced form models using PML and report the results in tables

14i.e. the function L∗(β|y) = L(β|y)
√
|I(β)| is optimized where L(β|y) is the standard likelihood function

and I(β) is the Fisher information matrix
15i.e. if more data is available, the shift is not as large, since the researcher’s level of ignorance is reduced

by the information available in additional data. Thus PML and standard ML estimates converge as the
sample size grows.
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5 and 6. We find that the results are qualitatively equivalent to our primary specifications

in the sense that the adjustment procedure results in improved model fit with substantial

improvements among the subset of the sample that most disagreed with the objective lottery

probabilities. We do note, however, that marginal effects (semi-elasticities) of the CRRA

parameter are much larger under PML estimation suggesting that there may be some small

sample bias in the magnitude of the regression coefficients in our primary specifications. This

does not contradict our primary message, though, since we are primarily concerned with the

differences between coefficient estimates between the base model and models making use of

adjusted CRRA values. Overall, the conclusion that the base model is likely understating

the effect of risk preferences on flood insurance purchasing decision remains robust.16

7 Conclusions

Experimentally eliciting attitudes toward risk has become a routine procedure for many

empirical studies focused on individual decisions in domains that contain an element of un-

certainty. Most of this literature ignores uncertainty in the individual’s decision weight or

“subjective probability” when deriving the risk coefficient that can be implied by a given

choice over risky prospects. In the generalized expected utility framework, however, uncer-

tainty in decision weights is equivalent to uncertainty in preferences towards risk due to the

multiplicative relationship between decision weights and the utility function. This means

that if the researcher assumes a probability that differs from the individual’s actual decision

weight, the risk coefficient implied by any model in the expected utility family will be in-

correct. This is particularly relevant for field data where the researcher does not control the

16Table 5 replicates table 3 using a PML estimated logit model and suggests the base model understates
the marginal effect of the CRRA parameter by 17% compared to the best fitting model. Similarly, Table
6 replicates table 4 and suggests the base model exhibits a downward bias of approximately 54%
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risky prospect but instead observes choices concerning naturally stochastic events. But, even

lab experiments may be prone to this source of bias, since it is difficult to verify whether

research participants accurately internalize the provided probabilities.

In this study, we propose a method to measure risk preferences in a domain-specific con-

text that accounts for uncertainty in the individuals’ decision weights. Our procedure elicits

risk preferences using a menu of lotteries where individuals pick their most preferred out of

all presented lotteries (much like Eckle and Grossman (2002)). Each lottery is constructed

by specifying payouts conditional on future weather events, which has the benefit of framing

risk in our domain of interest (natural hazard risk) and utilizing a stochastic process that is

transparent and independently verifiable by research participants. Follow-up questions are

then administered where participants can indicate disagreement with the objective probabil-

ities reported in the lotteries. This signals to the researcher that there is uncertainty in the

individual’s decision weight. We account for this uncertainty by using a novel Monte-Carlo

procedure that widens (or narrows) the interval of the risk coefficient that can be inferred

from any given individual’s observed choice. We show that this procedure produces coeffi-

cients of relative risk aversion that improve overall model fit for a reduced form model of

domain-relevant behavior (flood insurance purchasing decisions) when compared to models

that employ risk coefficients that ignore potential uncertainty in individual decision weights.

Finally, we find evidence of downward bias in the estimated effects of risk-aversion on flood

insurance decisions when we fail to account for decision weight uncertainty.
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8 Tables



Table 1: Descriptive Statistics

mean sd min max count

Panel A: Independent and Dependent Variables

Flood Policy 0.62 0.49 0.00 1.00 266
Premium (Calculated) 1426.09 1336.43 152.57 6036.70 265
Income 171.67 149.36 30.00 496.12 253
Wealth Share 0.33 0.22 0.10 0.90 261
Prob. Hurr 0.19 0.24 0.00 1.00 238
Exp. Damage 0.43 0.23 0.10 0.90 254
Exp. Aid 0.35 0.48 0.00 1.00 266
Past Flood 0.15 0.36 0.00 1.00 261
SFHA 0.26 0.44 0.00 1.00 266
Km to Coast 4.12 3.37 0.02 13.23 266
Age 55.12 14.49 21.00 80.00 258
Education 0.67 0.47 0.00 1.00 266
Worry 0.46 0.50 0.00 1.00 266
New To Coast 0.41 0.49 0.00 1.00 266

Panel B: Subjective Weather Beliefs

Correct Beliefs 0.22 0.42 0.00 1.00 266
Weather Probability 1 2.82 0.58 1.00 5.00 242
Weather Probability 2 2.83 0.95 1.00 5.00 242
Weather Probability 3 3.21 0.86 1.00 5.00 242
Weather Probability 4 3.24 0.97 1.00 5.00 240

Panel C: Risk Aversion Coefficients

CRRA (Original) 0.49 0.38 0.00 0.85 251
CRRA (5,10) 0.50 0.37 0.00 1.04 251
CRRA (10,20) 0.50 0.37 -0.02 1.25 251
CRRA (20,40) 0.51 0.38 -0.12 1.67 251
CRRA (30,60) 0.49 0.37 -0.26 0.92 251
CRRA (40,80) 0.49 0.38 -0.49 0.93 251



Table 2: Decision Weight Adjustments

Debriefing Choice Original Decision Weight New Decision Weight
“Much too low” PObj PSub = PObj × (1 + θm)
“Slightly too low” PObj PSub = PObj × (1 + θs)
“About right” PObj PSub = PObj
“Slightly too high” PObj PSub = PObj × (1− θs)
“Much too high” PObj PSub = PObj × (1− θm)



Table 3: Probit Regression on Flood Insurance Demand

CRRA CRRA CRRA CRRA CRRA CRRA
(Unadjusted) (5,10) (10,20) (20,30) (30,60) (40,80)

CRRA 0.7816 0.8618 0.8875 0.8953 0.8649 0.8536
(0.2853) (0.3007) (0.3010) (0.2948) (0.2975) (0.2896)

Premium (Calculated) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Income 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
(0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009)

Wealth Share 2.2279 2.2713 2.3029 2.3526 2.3565 2.4021
(0.5904) (0.5951) (0.5981) (0.6028) (0.6067) (0.6128)

Prob. Hurr -0.2615 -0.2920 -0.3149 -0.3485 -0.2553 -0.2531
(0.4476) (0.4494) (0.4511) (0.4542) (0.4505) (0.4509)

Exp. Damage 1.1859 1.1777 1.1656 1.1528 1.2189 1.2382
(0.4937) (0.4946) (0.4950) (0.4951) (0.4976) (0.4991)

Exp. Aid -0.3155 -0.3195 -0.3202 -0.3214 -0.3251 -0.3273
(0.2183) (0.2187) (0.2189) (0.2191) (0.2191) (0.2193)

Past Flood 0.6579 0.6711 0.6810 0.7001 0.6781 0.6874
(0.4414) (0.4421) (0.4422) (0.4430) (0.4408) (0.4409)

SFHA 0.8383 0.8389 0.8465 0.8537 0.8524 0.8422
(0.3694) (0.3682) (0.3677) (0.3677) (0.3652) (0.3652)

Km to Coast -0.0062 -0.0055 -0.0051 -0.0045 -0.0071 -0.0075
(0.0329) (0.0329) (0.0330) (0.0330) (0.0330) (0.0330)

Age 0.0068 0.0068 0.0066 0.0065 0.0070 0.0072
(0.0076) (0.0076) (0.0076) (0.0077) (0.0076) (0.0076)

Education 0.6284 0.6304 0.6306 0.6317 0.6377 0.6390
(0.2291) (0.2296) (0.2299) (0.2302) (0.2303) (0.2306)

Worry -0.0661 -0.0620 -0.0592 -0.0609 -0.0493 -0.0513
(0.2368) (0.2373) (0.2376) (0.2378) (0.2370) (0.2374)

New To Coast -0.1256 -0.1373 -0.1448 -0.1514 -0.1422 -0.1443
(0.2109) (0.2116) (0.2121) (0.2126) (0.2119) (0.2121)

Constant -2.2486 -2.2995 -2.3048 -2.3107 -2.3366 -2.3589
(0.7251) (0.7306) (0.7316) (0.7324) (0.7351) (0.7374)

Observations 209 209 209 209 209 209
LL -102.390 -102.013 -101.752 -101.448 -101.862 -101.730
AIC 234.779 234.026 233.505 232.897 233.725 233.461
AIC Weight 0.095 0.138 0.179 0.243 0.161 0.183
BIC 284.914 284.161 283.640 283.032 283.860 283.596
Bayes Factor 1.000 1.457 1.892 2.564 1.694 1.933
CRRA MFX 0.096 0.108 0.111 0.113 0.105 0.102



Table 4: Assessing Heterogeneity in Effect of Adjustment Procedure

CRRA CRRA CRRA CRRA CRRA CRRA
(Unadjusted) (5,10) (10,20) (20,30) (30,60) (40,80)

CRRA 3.1917 3.9477 4.1722 3.4647 5.2917 3.9101
(1.1234) (1.4044) (1.4575) (1.1614) (1.6692) (1.1600)

Premium (Calculated) -0.0004 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Income 0.0020 0.0018 0.0017 0.0016 0.0018 0.0017
(0.0015) (0.0015) (0.0016) (0.0015) (0.0016) (0.0016)

Wealth Share 3.5736 3.9163 4.1839 4.4268 5.5902 5.5305
(1.1356) (1.1999) (1.2483) (1.3022) (1.5353) (1.5163)

Prob. Hurr -0.2714 -0.5104 -0.6962 -0.7601 -0.1889 -0.1408
(0.7628) (0.7796) (0.8009) (0.8081) (0.8112) (0.8123)

Exp. Damage 2.6101 2.6347 2.6308 2.6750 3.8077 3.7270
(0.9905) (1.0024) (1.0105) (1.0154) (1.2070) (1.1859)

Exp. Aid -0.6486 -0.7338 -0.7838 -0.7885 -0.7954 -0.7889
(0.3822) (0.3936) (0.4018) (0.4044) (0.4141) (0.4105)

Past Flood 0.2090 0.2312 0.2483 0.2927 0.3621 0.3707
(0.6340) (0.6431) (0.6488) (0.6487) (0.6628) (0.6498)

SFHA 2.0515 2.0560 2.0960 2.0757 2.2088 2.0967
(0.7791) (0.7779) (0.7903) (0.7924) (0.7963) (0.7856)

Km to Coast -0.0854 -0.0843 -0.0854 -0.0861 -0.1047 -0.1013
(0.0524) (0.0532) (0.0540) (0.0539) (0.0560) (0.0547)

Age -0.0076 -0.0077 -0.0087 -0.0073 -0.0040 -0.0022
(0.0142) (0.0143) (0.0145) (0.0144) (0.0148) (0.0144)

Education 1.5424 1.6382 1.6929 1.7000 1.9334 1.8063
(0.4895) (0.5086) (0.5209) (0.5246) (0.5590) (0.5296)

Worry -0.4521 -0.4541 -0.4478 -0.4575 -0.5554 -0.5283
(0.4264) (0.4289) (0.4322) (0.4347) (0.4507) (0.4446)

New To Coast -0.3044 -0.4190 -0.5178 -0.5980 -0.6300 -0.6166
(0.3736) (0.3826) (0.3942) (0.4011) (0.4209) (0.4109)

Constant -2.2745 -2.5030 -2.4883 -2.5386 -3.8255 -3.6478
(1.1557) (1.1782) (1.1814) (1.1783) (1.4066) (1.3482)

Observations 101 101 101 101 101 101
LL -39.955 -39.116 -38.535 -38.888 -35.933 -36.935
AIC 109.911 108.233 107.071 107.775 101.866 103.870
AIC Weight 0.012 0.027 0.048 0.034 0.644 0.236
BIC 149.137 147.460 146.298 147.002 141.093 143.097
Bayes Factor 1.000 2.314 4.136 2.909 55.839 20.494
CRRA MFX 0.065 0.093 0.093 0.085 0.086 0.061



Table 5: Firth Logit Regression on Flood Insurance Demand

CRRA CRRA CRRA CRRA CRRA CRRA
(Unadjusted) (5,10) (10,20) (20,30) (30,60) (40,80)

CRRA 1.2751 1.4007 1.4413 1.4511 1.4381 1.4189
(0.4759) (0.5012) (0.5019) (0.4934) (0.5013) (0.4876)

Premium (Calculated) -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Income 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035
(0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0015)

Wealth Share 3.5343 3.6057 3.6587 3.7404 3.7760 3.8607
(0.9874) (0.9959) (1.0018) (1.0112) (1.0229) (1.0373)

Prob. Hurr -0.5044 -0.5579 -0.5979 -0.6540 -0.4986 -0.4938
(0.7182) (0.7244) (0.7302) (0.7397) (0.7260) (0.7266)

Exp. Damage 1.9269 1.9121 1.8908 1.8676 2.0159 2.0551
(0.8242) (0.8266) (0.8281) (0.8291) (0.8390) (0.8434)

Exp. Aid -0.5051 -0.5125 -0.5143 -0.5165 -0.5241 -0.5282
(0.3529) (0.3536) (0.3539) (0.3543) (0.3550) (0.3553)

Past Flood 0.9836 1.0005 1.0114 1.0359 0.9994 1.0131
(0.7377) (0.7378) (0.7368) (0.7361) (0.7346) (0.7346)

SFHA 1.4720 1.4743 1.4884 1.5019 1.5097 1.4951
(0.6627) (0.6603) (0.6600) (0.6604) (0.6558) (0.6559)

Km to Coast -0.0140 -0.0132 -0.0127 -0.0121 -0.0166 -0.0174
(0.0524) (0.0525) (0.0526) (0.0527) (0.0525) (0.0526)

Age 0.0118 0.0118 0.0115 0.0114 0.0122 0.0126
(0.0125) (0.0125) (0.0125) (0.0126) (0.0125) (0.0125)

Education 1.0177 1.0218 1.0229 1.0252 1.0409 1.0446
(0.3754) (0.3765) (0.3772) (0.3780) (0.3789) (0.3797)

Worry -0.0499 -0.0430 -0.0383 -0.0417 -0.0223 -0.0281
(0.3843) (0.3856) (0.3865) (0.3871) (0.3858) (0.3864)

New To Coast -0.1691 -0.1881 -0.2004 -0.2118 -0.1947 -0.1980
(0.3441) (0.3453) (0.3461) (0.3469) (0.3460) (0.3464)

Constant -3.5465 -3.6261 -3.6323 -3.6398 -3.7231 -3.7640
(1.1838) (1.1944) (1.1976) (1.2008) (1.2057) (1.2100)

Observations 209 209 209 209 209 209
LL -71.441 -71.138 -70.889 -70.591 -70.850 -70.683
AIC 172.881 172.275 171.778 171.182 171.700 171.367
AIC Weight 0.096 0.131 0.167 0.226 0.174 0.206
BIC 223.016 222.410 221.913 221.317 221.835 221.502
Bayes Factor 1.000 1.354 1.736 2.338 1.806 2.132
CRRA MFX 0.598 0.669 0.689 0.700 0.665 0.652



Table 6: Firth Logit: Assessing Heterogeneity in Effect of Adjustment Procedure

CRRA CRRA CRRA CRRA CRRA CRRA
(Unadjusted) (5,10) (10,20) (20,30) (30,60) (40,80)

CRRA 4.0664 4.8575 5.0578 4.3189 6.5694 4.9360
(1.6148) (1.9714) (2.0286) (1.6731) (2.4417) (1.6929)

Premium (Calculated) -0.0004 -0.0004 -0.0004 -0.0005 -0.0005 -0.0004
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Income 0.0024 0.0021 0.0020 0.0019 0.0020 0.0020
(0.0022) (0.0023) (0.0023) (0.0022) (0.0024) (0.0023)

Wealth Share 4.6936 5.0527 5.3392 5.6658 7.1064 7.1233
(1.6888) (1.7540) (1.8046) (1.8843) (2.2511) (2.2465)

Prob. Hurr -0.3446 -0.6573 -0.8823 -0.9750 -0.2184 -0.1492
(1.1141) (1.1635) (1.2191) (1.2553) (1.1731) (1.1774)

Exp. Damage 3.4821 3.4621 3.4369 3.5012 4.9364 4.8855
(1.4937) (1.4940) (1.5036) (1.5160) (1.7940) (1.7752)

Exp. Aid -0.8628 -0.9706 -1.0228 -1.0213 -1.0352 -1.0234
(0.5843) (0.5975) (0.6057) (0.6075) (0.6195) (0.6153)

Past Flood 0.2494 0.2867 0.3139 0.3766 0.4338 0.4585
(0.9568) (0.9566) (0.9506) (0.9499) (0.9706) (0.9645)

SFHA 2.4782 2.4606 2.4966 2.4820 2.6057 2.4748
(1.0666) (1.0595) (1.0707) (1.0747) (1.0720) (1.0593)

Km to Coast -0.1176 -0.1142 -0.1148 -0.1157 -0.1416 -0.1367
(0.0817) (0.0822) (0.0832) (0.0828) (0.0867) (0.0843)

Age -0.0100 -0.0101 -0.0112 -0.0094 -0.0056 -0.0030
(0.0213) (0.0215) (0.0217) (0.0215) (0.0222) (0.0217)

Education 2.0458 2.1404 2.1898 2.2032 2.5077 2.3622
(0.7272) (0.7462) (0.7589) (0.7662) (0.8251) (0.7877)

Worry -0.6176 -0.6017 -0.5835 -0.5912 -0.7159 -0.6892
(0.6424) (0.6399) (0.6430) (0.6458) (0.6633) (0.6569)

New To Coast -0.3651 -0.4950 -0.6091 -0.7203 -0.7350 -0.7405
(0.5706) (0.5774) (0.5893) (0.6001) (0.6312) (0.6198)

Constant -2.9801 -3.2111 -3.1777 -3.2670 -4.8519 -4.7081
(1.6958) (1.7183) (1.7283) (1.7280) (2.0198) (1.9545)

Observations 101 101 101 101 101 101
LL -17.543 -17.068 -16.653 -16.743 -14.615 -15.135
AIC 65.085 64.137 63.305 63.486 59.231 60.271
AIC Weight 0.027 0.043 0.066 0.060 0.504 0.300
BIC 104.312 103.363 102.532 102.712 98.458 99.498
Bayes Factor 1.000 1.607 2.436 2.225 18.678 11.104
CRRA MFX 0.596 0.821 0.851 0.746 0.917 0.656



9 Figures



Figure 1: Risk Preference Instruments



Figure 2: Weather Probability Debriefing Questions

Figure 3: Inequality 7 for various ε



Figure 4: Original vs Adjusted CRRA Values


