
Flood risk perceptions: Accuracy, determinants, and the
role of probability weighting.

Dylan Turner∗and Craig E. Landry†

December 7, 2022

Abstract

This study analyzes survey data of US east coast homeowners to characterize accu-
racy and determinants of homeowner flood risk (mis)perceptions. Using an array of
instruments, we assess subjective risk perceptions and compare them to objective risk
estimates. Reduced-form regressions suggest flood experience, worry, coastal tenure,
education, primary homeownership, income, and wealth influence relative perceptions
of risk. Common probability weighting functions do not fit the divergence in risk per-
ceptions, suggesting that the source of the probability distortions is most likely due to
misperceiving the true risk rather than a widespread behavioral heuristic.
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1. Introduction

Understanding the motivations behind individual decisions to mitigate against natural haz-

ards is becoming increasingly relevant as the social and economic costs of extreme weather

events have been increasing for decades (NOAA, 2020a). Increased development in hazard-

prone areas is partly to blame for rising costs (Kunreuther & Michel-Kerjan, 2007), but

the increased frequency of global catastrophic events cannot be ignored as a contributing

factor (Boustan et al., 2019; Gaiha et al., 2015; Kousky, 2014). By far, the most costly of

these hazards are tropical cyclones and associated flooding. For homeowners, flood insur-

ance is a primary tool for limiting fiscal impacts from flooding. Yet, only about 30% of US

households in FEMA-designated special flood hazard areas (SFHAs) have a flood insurance

policy (Kousky et al., 2018). One potential explanation for this is widespread individual

misperceptions of personal flood risk.

If individuals perceive the likelihood of flooding or the associated damages to be low

relative to the objective risk, they may forgo investing in flood mitigation strategies based on

incorrect beliefs. From a policy perspective, this is particularly noteworthy; if misperceptions

are driving flood mitigation behavior, then the accuracy and interpretability of objective

risk information available to flood-prone residents could influence personal mitigation and

investment decisions (as well as support of public risk management projects).

This study seeks to quantify and assess the relationships among perceived and objective

coastal hazard risks. Using a novel survey data set consisting of homeowners from three

coastal counties in Georgia, North Carolina, and Maryland, we compare respondents’ per-

ceived probability of their home flooding, the damage their home would sustain in the event

of a flood, and the likelihood of a major hurricane strike against objective estimates of the

same risks. We then analyze the role that observable characteristics have on divergence in

risk perceptions to establish potential determinants of misperceiving risk. To help differenti-

ate between idiosyncratic probability misperceptions and systematic probability weighting1,

we estimate a series of structural regression models that attempt to map each individual’s

unique objective flood probability to their reported subjective flood probability using six

probability weighting functions that are common to the literature.

1Previous analyses that have attempted to estimate structural decision models have struggled with dis-
tinguishing between individual probability weighting and probability misperceptions (Barseghyan et al.,
2013b; Collier et al., 2021).
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Concerning perceptions of general flood risk, we find individuals in the sample do not

exhibit any consistent tendencies regarding the probability of a flood; correct, optimistic,

and pessimistic perceptions are all well represented in our sample. With respect to expected

flood damage, almost all survey respondents overestimate the damages associated with a

flood, regardless of the return period. When comparing perceived flood damages against

floods of various inundation levels, however, we find the frequency of pessimistic and cor-

rect perceptions to be much more balanced. This suggests that individuals’ overestimation

of damage stems primarily from overestimating the water inundation levels as opposed to

misunderstanding the relationship between a fixed level of inundation and home damage.

Our analysis of determinants of risk perceptions reveals that past flood experiences and

levels of worry both generally influence risk perceptions. Additionally, we find that objective

risk metrics influence perceived flood probabilities but only when the risk metric is highly

publicized, which suggests that information campaigns may be an effective way to influence

public perceptions of flood risk. Finally, the estimation of probability weighing parameters

suggests that the deviations seen between perceived and actual flood probabilities cannot be

easily explained by probability weighting, suggesting that the observed deviations are due

to idiosyncratic misperceptions of risk.

The results presented here contribute to the existing literature in several ways. First, our

results contribute to the literature on the accuracy of risk perceptions from a novel data

set obtained from several locations along the US east coast. This is notable since there

is a paucity of literature that quantifies the deviations between perceived and objective

coastal hazard risks. Additionally, existing studies are not in agreement on the nature of

risk misperceptions. The literature has so far found evidence of individuals overestimating

the likelihood of flooding (Botzen et al., 2015; Mol et al., 2020), underestimation of the

likelihood of flooding (Bakkensen & Barrage, 2022; Royal & Walls, 2019), underestimation

of flood water levels (Mol et al., 2020), underestimation of expected damages (Botzen et al.,

2015), underestimation of “flood risk exposure” (Royal & Walls, 2019), and some evidence

that damage expectations are generally correct (Mol et al., 2020). Variation in findings likely

reflects temporal, methodological, spatial, and institutional differences in each study, making

it difficult to interpret or generalize the array of results.2 Thus, our results, representing

2For example, the findings of Mol et al. (2020) are based in the Netherlands and thus cannot reliably be
generalized to the U.S., given significant differences in institutional setting. Royal & Walls (2019) sample
from coastal Maryland, which had not witnessed any major flood events for a number of years before
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several locations on the US east coast, help bring the literature closer to a consensus on the

nature and determinants of individual perceptions of natural hazard risk.

Second, to our knowledge, we are the first to fit structural probability weighting functions

to observational data in the domain of flood risk. This provides important insights for

future policy discussions. As noted by Barseghyan et al. (2013b), the distinction between

misperceptions and probability weighting does not matter in the sense that both assumptions

could lead to models that accurately predict behavior, but policy implications differ under

each scenario. For example, if individuals misperceive probabilities of natural hazard risk,

information campaigns may be an effective policy intervention, which would have little to no

effect if individuals instead have correct perceptions of risk, but distort probabilities when

utilizing risk information for actual decisions.

The remainder of this paper is organized as follows. Section 2 provides an overview of

the existing relevant literature. Section 3 details the data sources utilized and presents

descriptive statistics. Section 4 describes our empirical methodology. Section 5 presents

results, while section 6 discusses the results. Section 7 concludes.

2. Literature Review

A number of studies have measured individual perceptions of natural hazard risk using a

variety of methods (see Bubeck et al. (2012) and Lechowska (2018) for reviews). Other studies

have assessed both lay people and expert measures of flood risk using qualitative scales and

interview techniques (Siegrist & Gutscher, 2006; Ruin et al., 2007). However, empirical

studies that quantify the difference in homeowners’ subjective assessments of flood risk and

objective analogs of the same risk are uncommon. Moreover, the few existing studies that

explore this topic produce quite different findings on the general tendency to overestimate or

underestimate risk. Botzen et al. (2015) survey 1000 homeowners in flood-prone regions of

New York City and investigate individual awareness of living in a flood zone, perceived flood

probability, and perceived flood damages. After using a series of multiple choice questions to

elicit each individual’s perceived probability of a flood and their expected cost to repair their

the survey; additionally, they only survey SFHA residents, meaning their results may not generalize to
homeowners in lower-risk flood zones. Notably, Botzen et al. (2015)’s survey was administered 6 months
after hurricane Sandy, implying many survey respondents had vivid memories or recent direct experience
with flood damage.
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home after a flood, they find that most individuals overestimate the probability of a flood

but under-estimate associated damages when compared to objective HAZUS3 risk estimates.

Royal & Walls (2019) survey several hundred coastal floodplain residents in Maryland and

investigate individuals’ perceptions of flood risk by first asking individuals to indicate if they

thought their home was more or less exposed to flood damages than the median home in

their sample. Additionally, they compare each individual’s belief about being at lower risk

against objective risk assessments generated by HAZUS. In both cases they find residents

to generally be over-optimistic in their perceptions of flood risk. Elicitation of the perceived

probability of flooding, using an open-ended query, revealed that the majority of homeowners

believed the annualized probability of a flood to be less than 1% despite all properties in the

sample being located in SFHA zones defined by at least a 1% chance of flooding per annum.

Mol et al. (2020) survey roughly 2000 Dutch homeowners to assess flood risk mispercep-

tions and identify determinants of those misperceptions. With regard to perceived flood

probability, they find that 89% of their sample have flood risk perceptions that are incorrect,

even when applying a large 25% margin-of-error. The majority of their sample (55%) overes-

timated the probability of a flood, while 34% have flood risk perceptions that are lower than

objective estimates. Those who underestimated the probability of a flood were primarily

characterized as neglecting the risk altogether. With respect to flood consequences, they

find most residents report much lower maximum water levels than objective estimates would

suggest. Individuals’ expected damages, however, were roughly in line with objective esti-

mates about half of the time (using a 25% margin-of-error). Those who reported expected

damages that differed from objective estimates were slightly more likely to underestimate

damages than overestimate.

Bakkensen & Barrage (2022) survey 187 coastal residents in Rhode Island and ask them to

indicate their level of worry regarding coastal flood hazards along with their belief about the

probability of their home flooding at least once over the next 10 years. They then compare

the subjective flood probabilities against objective probability estimates generated using a

variety of sea-level rise projections and flood inundation mapping tools. Overall, they find

approximately 70% of residents underestimate the cumulative probability of a flood occurring

in the next 10 years.

To our knowledge, Meyer et al. (2014) is the only study that directly measures individuals’

3Hazards U.S. (HAZUS) is a GIS-based natural hazards analysis tool created and maintained by FEMA
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subjective perceptions of hurricane risk and compares them to objective estimates. They

conduct phone surveys to elicit individual risk perceptions multiple times leading up to

Hurricane Issac and Hurricane Sandy making landfall on the Gulf Coast and New York

City, respectively. They find that individuals in their sample consistently overestimated the

probability that their homes would be afflicted by hurricane-force winds.

3. Data

3.1. Survey Data

The empirical analysis we conduct involves three distinct steps. The first compares objec-

tive and subjective metrics of flood and hurricane risk and categorizes respondents as being

pessimistic, roughly ‘correct’, or optimistic in their risk assessments. The second step ex-

plores possible determinants of the observed heterogeneity in misperceptions by conducting

reduced-form regression analyses. Data requirements for our analysis necessitate having 1)

subjective risk metrics (i.e., the natural hazard risk individuals think they face), 2) objective

risk metrics (i.e., reliable and accurate estimates for the natural hazard risk individuals actu-

ally face), and 3) individual characteristics that plausibly influence risk perceptions. Lastly,

we test numerous weighting functions to assess their performance in explaining the difference

among subjective and objective risk perceptions. The remainder of this section details the

sources and collection methods for these data and concludes with descriptive statistics.

3.2. Subjective Risk Metrics

The majority of the data used to conduct our analysis were gathered via mail surveys that

took place in five waves between October 2018 and August 2021. Each sample targeted

recent home buyers in various coastal locations along the east coast. The first wave was

administered in Glynn County, GA in October 2018, followed by a second wave in Dare

County, NC in June 2020, the third wave in Worcester County, MD in July 2020, the fourth

wave in Dare County, NC in June 2021, and the final 5th wave in Worcester County, MD in

July 2021. Figure 1 provides a spatial and temporal overview of our sampling waves.

Most notable for our analysis were questions designed to elicit individuals’ beliefs regard-

ing coastal hazard risk. Given that our analysis seeks to compare individuals’ subjective
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assessments of risk to objective analogs, we employ a battery of instruments that include

open-ended, multiple choice quantitative measures, frequencies, and Likert scales. This ap-

proach permits comparative assessment and triangulation of risk perceptions among multiple

domains (i.e., hurricane and general flood risk). With coding and interpretation, most mea-

sures can be directly compared with publicly available objective risk perceptions.

Given that flood zones in the U.S. are characterized by explicitly defined flood proba-

bilities4, we utilize an open-ended query to elicit annualized subjective flood probabilities5.

Specifically, respondents were prompted to answer the following question:6

“In the next 12 months, what do you think the percentage chance is that your

home will flood from any weather-related event (rain, storm surge, hurricane,

etc.)?”

Contrary to flood likelihood, no publicly available measures of flood damage exist (in part

due to the measure being unique for each home) to guide development of our instrument for

eliciting perceptions of flood damage. To obtain an estimate of each respondent’s subjective

beliefs regarding personal home damage from a weather-related flood, the following open-

ended question was posed to survey participants:

“If your home were to flood from any weather-related event (rain, storm surge,

hurricane, etc.), approximately how much do you think it would cost to return

your home to its prior condition?”

Unlike floods, likelihoods for hurricane strike are typically measured as historical return

period - the number of hurricanes to pass within 50 nautical miles (approximately 58 statue

miles) per unit of time (NOAA, 2020b). To create an analogous subjective risk metric,

respondents were queried on the following expected frequency response:

4For example, FEMA SFHA zones are defined as “the area that will be inundated by the flood event having
a 1-percent chance of being equaled or exceeded in any given year”.

5In addition to being advocated for in recent publications (see Barseghyan et al. (2018), section 7.3 for
a review), direct probability queries have the marked advantage of eliciting a direct input for many
theoretical models of decision making under risk which make estimation of structural models, like the
one described in section 4.3 of this study, possible.

6Questions eliciting subjective assessments of general flood risk were added to the survey only after the
initial survey wave in Glynn County, GA. Thus, data from Glynn County are only used in our analysis
of hurricane risk perceptions.
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“How many major hurricanes (Category 3 or greater, with winds of 111 mph or

greater, possibility of tornadoes, and storm surge of at least 10-12 feet) do you

expect to pass within 60 miles of your county over the next 50 years?”

Responses to the above question were then mapped to a corresponding annualized prob-

ability7. Hurricane risk perceptions in the final two waves (Dare and Worcester Counties)

were elicited in a slightly modified version of the frequency question that utilized a mul-

tiple choice format. This permits an assessment of sensitivity of risk perception measures

to modifications in the frequency-based survey instrument. Specifically, respondents were

prompted to select either “None”, “One”, “Two”, “Three”, “Four”, “Five”, “Six or more

(please specify how many)” with the last option soliciting an open-ended response. We re-

fer to this method as “hurricane risk elicitation method 2”, while the former (open-ended

frequency) is referred to as “hurricane risk elicitation method 1”.

In addition to the subjective probability of a hurricane strike, we also elicit subjective

perceptions of hurricane damage, framing damage as a percentage of home structure value

(the same way HAZUS damage estimates are conveyed). This is accomplished with the

following question:

“Suppose a Category 3 hurricane (with winds exceeding 110 mph, possibility of

tornadoes, and storm surge of at least 10-12 feet) directly struck near your house

at high tide. How much damage (expressed as a percentage of total home value)

do you think your home would most likely suffer?”

Respondents then indicated a level of damage on an ordered categorical scale ranging from

“0%-10%” up to “91% - 100%” in 10 percentage point increments.8

3.3. Objective Risk Metrics

To obtain objective estimates of the natural hazard risk individuals in our sample face, we

utilize several data sources. The first is the FEMA-designated flood zone for each property,

7i.e. We divide the response by 50 and censor values greater than 1
8Although we elicit perceptions of hurricane damage and include them here for informational purposes,
we do not compare these to objective estimates. This is because, to our knowledge, there is no simple
way to credibly estimate hurricane damage without being overly precise in the conditions. For example,
hurricane damage is highly dependent on the confluence of wind speed, precipitation, storm surge, tidal
conditions, etc. In our opinion, trying to specify these conditions in a survey question would lead to an
overly complicated question and risk prompting participant dropout.
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which is obtained by cross-referencing digitized flood hazard layers against geospatial coor-

dinates of each property. As a metric of risk, these flood zone classifications are quite crude

with only three primary classifications; “a less than 0.2% percent chance per annum” (Zone

X500), “between a 0.2% and 1% chance per annum” (Zone X), and “greater than or equal to

1% chance per annum” (Zones A, V). Additionally, the accuracy of flood maps that assign

homes to one of these designations has been called into question. Wing et al. (2018) estimate

that 41 million U.S. households face a 1% chance of flooding per annum, while FEMA flood

maps indicate only 13 million households face that same risk. Using proprietary catastrophe

models designed by re-insurers, Czajkowski et al. (2013) find significant differences in flood

risk for identical FEMA flood zones located in coastal and inland parts of Texas, similar

loss distributions for properties located in different FEMA flood zones, and considerable

storm-surge risk that is not identified by FEMA flood zones.

These FEMA flood zones, however, are highly publicized and are the primary risk metric

for pricing flood insurance policies; thus, they serve as an important control for analyzing

determinants of risk perceptions. In addition to FEMA flood zone status, we also obtain

detailed flood risk data for each study property from the probabilistic flood model produced

by the First Street Foundation (First Street Foundation, 2020), which includes the annualized

probability of a flood along with flood depths for flood events with 5, 20, 100, and 500-year

return periods.

To obtain estimates of damage in the event of a flood, we take the flood depths (for each

return period, which are unique to each property footprint) and calculate flood inundation

levels based on the first-floor elevation for each home in our sample. These flood inundation

levels, along with other home characteristics, are used to create flood damage estimates using

a variety of flood damage functions,9 which map flood inundation levels into damage as a

share of total structure value. Additionally, we calculate damage estimates for each home

under the assumption of 1ft, 5ft, and 10ft water inundation levels. This provides a metric

that allows for meaningful comparisons across homes without confounding susceptibility to

water inundation with an increased probability of higher floodwaters.10

9We generate damage estimates using multiple damage functions and then average results to obtain a single
damage estimate. The damage functions used are FEMA’s Flood Impact Analysis Damage Function
(FIA), and several produced by the U.S. Army Corps of Engineers (USACE) which include “USACE -
IWR”, “USACE - Chicago”, and “USACE - Galveston”.

10In other words, this allows us to remove the stochastic element from the flood and measure the damage
from essentially pouring water into each home until it reaches the same depth in all homes.
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Objective estimates of a major hurricane making landfall are obtained by using data from

the National Oceanic and Atmospheric Administration’s (NOAA) National Hurricane Center

(NHC). The NHC’s online “Historical Hurricane Tracks” tool allows hurricanes and tropical

storms to be filtered to obtain a return period for a hurricane of given conditions (we use the

conditions specified in our subjective risk assessment question)(National Hurricane Center,

2020). The return period is then be mapped into an annualized probability.

3.4. Descriptive Statistics

The remaining data are obtained from the survey, which is discussed here alongside descrip-

tive statistics for all data used in the analysis.

Panel A of table 1 reports descriptive statistics for all variables related to subjective risk

perceptions. The mean respondent believed there was an approximate 8 percent chance of

their home flooding from any weather-related event in the next 12 months. The mean annu-

alized hurricane strike probability derived from respondents’ expectations on the frequency

of future hurricane strikes was 0.18. We note, however, heterogeneity in responses across

elicitation methods. Survey respondents who were prompted with only an open-ended fre-

quency had a mean subjective probability of a hurricane strike of 0.25, while those who were

prompted with multiple-choice options (in addition to having the option to write in their own

value) had a mean subjective probability of 0.09.11 Concerning perceptions of flood damage,

the average respondent believed if their home were to flood, damage would be equivalent to

49 percent of their home’s structure value. The average respondent believed a direct strike

from a major hurricane would lead to home damage equivalent to 35 percent of their home

structure value.

Descriptive statistics for the corresponding objective risk metrics are reported in Panel B

of table 1. Data from the First Street Foundation suggest the average home in the sample

has a 9 percent annual chance of flooding. Data from NOAA indicate a 4 percent annual

chance of a major hurricane strike, although there is very little variation in this metric since

it is observed at the county level. Worcester County has a 2.2 percent historical chance of

a major hurricane strike; Glynn County has a 3 percent chance, and Dare has a 6.3 percent

chance. Flood damage estimates suggest that in the event of a “5 Year”12 flood, the average

11Clearly, there are framing effects in our measurement of hurricane risk.
125-year flood is an event that exhibits a return probability of approximately 20%
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flood damage would be equivalent to approximately one-third of one percent of the homes

structure value. Similarly, return intervals of 10 years, 100 years, and 500 years are associated

with average damages of 1 percent, 3.9 percent, and 6.9 percent of home structure value.

Defining a flood based on inundation levels of 1 foot, 5 feet, and 10 feet (which are very low

probability events for most homes) suggests average damages of approximately 19 percent,

36 percent, and 51 percent of home structure values.

Descriptive statistics for the remaining variables in our analysis are reported in panel

C of table 1. Previous literature has noted the role that affect (fear, worry, dread) plays

in perceptions of risk (Botzen et al., 2015; Mol et al., 2020). To elicit metrics regarding

individuals’ proclivity to worry, respondents were asked to indicate their degree of worry

across multiple domains (e.g., personal health, family health, financial difficulties) using a 4-

point Likert scale ranging from “Not at all worried” to “Very worried”. Each Likert response

is converted to a binary indicator that indicates worry if individuals answered with a 3 or

4 in a particular domain. Responses from each domain are taken and summed to create a

worry index, with the exception of worry about home loss from a natural disaster, which is

excluded. This makes it possible to isolate the effect of worry over home loss while controlling

for general levels of worry as captured by the index. Overall, the worry index had a mean

value of 2.32 indicating that on average individuals had feelings of worry in just over two of

the seven domains (excluding home loss). Additionally, 36 percent of respondents indicated

worrying about losing their homes as a result of a natural disaster. The variable ‘relative

worry’ is the ratio of worry of home loss to natural disaster to the overall worry index.

The average years of education was 16.5 years, indicating a significant proportion of re-

spondents with some level of post-secondary education. Thirty-two percent of respondent

indicated they were female. Seventy-nine percent of the sample indicated that the survey

home is their primary residence. The average survey respondent had lived on the coast

for approximately 13 years. Thirty-eight percent of respondents resided in an SFHA zone.

In addition to FEMA-designated SFHA status, we construct the equivalent of SFHA using

data from the First Street Foundation (i.e. an indicator for 1% chance of flooding per annum

using First Street’s compound flood risk measures). Overall, the First Street data suggest

that 54 percent of households in the sample should be classified as SFHA, a roughly 40%

increase over officially designated FEMA SFHA properties. Respondents were prompted

to report household income by categorical measure, ranging from “less than $35,000” up to
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“more than $250,000”. Most intervals were coded at their midpoint with the exception of the

lowest and highest interval. The lowest interval was assigned a coding of $30,000 while the

unbounded top interval was assigned using the methods suggested by Hout (2004), which en-

tails extrapolating income based on a Pareto distribution. This results in top-coded income

level of $284,280 and mean household income of $154,000. Household wealth is notoriously

difficult to measure, particularly in the context of a survey. In order to create a proxy for

wealth, the survey included a categorical response question regarding the impact of total

loss of coastal property (without insurance) on net worth (including a brief definition of net

worth). The impact measures ranged from 0% (no impact) to 100% (total loss of net worth)

in 20% increments. We use the property value and the mid-point of the response category to

create a proxy for household wealth, for which the average is $548,000 (median = $340,000).
Ten percent of respondents indicated that they had personally sustained flood damage in

the past.

4. Empirical Methods

We first offer a simple descriptive analysis, comparing subjective risk metrics elicited in

the survey against objective metrics of the same risk type and categorizing respondents

based on the accuracy of their risk perceptions. We then explore heterogeneity of deviations

in subjective and objective using reduced-form regression models that are tailored to the

nature of the dependent variables. Finally, we conclude our analysis by estimating a series of

probability weighting functions to assess their ability to control differences among subjective

and objective flood probabilities. The remainder of this section details each component of

the analysis in turn.

4.1. Objective Vs. Subjective Risk Metrics

Building upon previous research (Botzen et al., 2015; Mol et al., 2020), subjective risk

perceptions were elicited using an array of instruments (open-ended for flood probability,

percentage of structural value for flood damage, and expected hurricane frequency) and were

categorized as being correct as long as the difference between the subjective and objective

metrics falls within a margin-of-error. This is deemed necessary since all measures are
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continuous and virtually none of the survey respondents have subjective perceptions that

exactly match the objective metrics. Realizing that any chosen margin-of-error is arbitrary,

we conduct sensitivity analysis, reporting results for 1, 2.5, 5, 10, 25, and 50 percentage

point margins-of-error. We use these error bounds to classify each respondent as having

correct, pessimistic (over-estimation of risk), and optimistic (under-estimation of risk), and

we report the share of respondents in each category.

4.2. Regression Analysis

To assess whether the accuracy of risk perceptions can be explained by observable char-

acteristics, we run a series of reduced-form regression models that focus on the variability

of differences in subjective and objective measures of flood probability and expected flood

damage. For each regression, we take the difference between objective and subjective risk

measures and transform this measure by the inverse hyperbolic sine (IHS) transformation

(Bellemare & Wichman, 2020).13 Figure 2 plots the density of IHS-transformed difference

in flood probabilities and hurricane probabilities, while Figure 3 plots the densities for IHS-

transformed flood damage differences using each available objective reference flood we have

available in our data set.

Considering probability differences first, we note that the flood probability based density

is irregularly distributed with a clear spike at zero and a large number of observations

below zero. In this case, coefficient estimates from standard regression models (Ordinary

Least Squares (OLS), for example) will impose restrictive relationships and entail opposite

effects depending upon of the sign of the dependent variable.14 To address this issue, we

make use of quantile regression. Our primary specification sets the quantiles such that one

contains negative values of the dependent variable and the other contains positive values.

Coincidentally, the median of our dependent variable is exactly zero, which means estimating

13Inverse Hyperbolic Sine (IHS) transformation for x is given by ln(x+
√
x2 + 1) but, unlike natural loga-

rithm, is defined for all real x.The shape of IHS is similar to natural log over positive values; it takes a
value of 0 at 0, and translates a similar shape to natural log in the negative orthant.

14For example, a positive regression coefficient estimate would indicate the IHS-transformed difference in
objective and subjective flood probabilities increases with the level of the covariate. For a positive differ-
ence (objective > subjective), this implies the differences is getting larger, but for a negative difference
(subjective > objective) this implies the difference is getting smaller. In short, estimating the effect of
observable characteristics on the IHS-transformed difference in flood probabilities with most regression
models would result in a substantial loss of valuable information and make interpretation difficult.
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a median regression achieves this goal. We also explore other quantiles to assess sensitivity

of elasticities and marginal effects.

While median regression is appropriate for differences in flood probabilities, modeling the

difference in subjective and objective flood damage requires a difference approach. Figure

3 suggests bimodal distributions for each damage measure — an observation that is also

supported by statistical evidence15. Thus, to analyze the variability in damage risk per-

ceptions, we employ the model of (Vasconcelos et al., 2021) which is based on a modified

exponential-Gaussian distribution that the authors refer to as the “odd log-logistic exponen-

tial Gaussian” distribution (OLLExGa for short). The primary advantage of the OLLExGa

distribution is that it allows for more flexibility in modeling skewness which allows for a

regression framework that can accommodate bi-modality (Vasconcelos et al., 2021). This is

notable since there are no canonical regression frameworks that explicitly apply to bimodal

data. Given that the “100-year flood” is the prototypical reference for flood probability in

the U.S.,16 we construct our dependent variable for flood damage analysis using estimated

damage from a 100-year flood as the basis for differences among subjective and objective

assessments. Estimation of the OLLExGa regression is carried out by maximizing a log-

likelihood function derived from the OLLExGa distribution as described by (Vasconcelos et

al., 2021).17

4.3. Misperceptions vs Probability Weighting

Our final task entails an assessment of the potential for probability weighting to explain

the divergence between objective and subjective risk measures. The literature on probabil-

ity weighting suggests that this divergence can be summarized by a systematic functional

mapping. For example, suggested weighting functions transfer weight from high likelihoods

(i.e., greater than 50%) to lower likelihoods (Barseghyan et al., 2018). Given the roughly

balanced distributions in figure 2, we do not expect standard weighting functions to fit all

15A test proposed by Ameijeiras-Alonso et al. (2019) evaluates the null hypothesis of one mode; we used the
multi-mode R package (Ameijeiras-Alonso et al., 2021) to run this test and reject the null with a p-value
of 2.2× 10−16.

16The 100-year flood defines Special Flood Hazard Area (SFHA) zones, which determine when residential
flood insurance is required, and governs building codes and special flood mitigation requirements.

17A similar analysis is carried out to assess determinants of perceptions of hurricane strike probabilities, but
due to lack of variation in objective risk measures (which are defined at the county level) the results are
not very informative. We include these results in the appendix for completeness.
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of the data, but we explore numerous approaches to assess whether probability weighting is

able to provide insight into the divergence of subjective and objective likelihoods.

Given that our outcome variable is a probability, we base our structural model on a beta

regression, which is specifically constructed for a dependent variable of this type (Ferrari &

Cribari-Neto, 2004). In a standard beta regression, the parameter µ is a linear combination

of observable characteristics, X, and parameter vector, β, that get passed through a link

function g(.)−1 (equation 1). The link function can be any function that maps the covariate

domain to the unit interval (such as a logit function). To introduce probability weighting, µ is

simply redefined to use a probability weighting function, Ψ(X; θ) as the link function18, and

in place of X, the objective flood probabilities,Pobj, are used (equation 2). The parameter

vector θ defines the curvature of the weighting function and contains one or two elements

depending on the particular weighting function. Regardless of whether probability weighting

is used, the likelihood function for the beta regression, with the subjective probability Psub

as the independent variable, is defined in equation 3 where B(.) is the beta function.

µ = g−1(α +Xβ + ϵ) (1)

µ = Ψ(Pobj; θ) (2)

f(Psub|µ, ϕ) =
P

(µϕ−1)
sub (1− Psub)

((1−µ)ϕ−1)

B(µϕ, (1− µ)ϕ)
(3)

The log-likelihood functions corresponding to structural econometric models often involve

highly non-linear functions with local optima, creating convergence and stability problems

for standard estimation approaches like maximum likelihood. Accordingly, we estimate the

structural beta regressions using standard Monte-Carlo Markov Chain (MCMC) methods.

Full details associated with the MCMC estimation procedure can be found in appendix A.

18In addition to a simple power weighting function (i.e. raising the objective probability to a power defined
by an estimated parameter), estimation is done using the probability weighting functions described by
Goldstein & Einhorn (1987), Prelec (1998), Tversky & Kahneman (1992), and Gonzalex & Wu (1999)
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5. Results

5.1. Accuracy of Risk Perceptions

As an initial test of flood risk perceptions, we simply check what proportion of respondents

reported perceptions that are consistent with their official FEMA designated flood zone.

Table 2 reports the share of respondents that had flood risk perceptions that were consistent

with their official flood zone designation. Overall, 38 percent of respondents had flood risk

perceptions that were consistent with their flood zone status, with the majority of those being

located in the SFHA, the minority located outside the flood zone, and no respondents located

in the 500-year flood zone. Almost a third of respondents (31%) had relatively pessimistic

risk assessments (though located in the 500-year flood zone or outside the flood zone), while

just over a quarter (26.5%) exhibited optimistic flood risk perceptions (the majority of which

were located in the 500-year flood zone).19 While somewhat insightful, FEMA flood zone

classifications are too crude as an objective risk metric to be particularly useful in classifying

flood risk perceptions.

Figure 4 displays the share of respondents that had subjective probabilities of flooding that

were correct (top row) along with the accuracy of damage expectations for floods with various

return periods (5-year to 500-year; rows 2 to 5) and water depths (1 foot to 10 feet; rows 6 to

8).20 The columns of Figure 4 are associated with different margins-of-error, ranging from 1%

(first column) to 50% (sixth column). Focusing on the top left, we see that approximately 28

percent of respondents had subjective probabilities of flooding that were within 1 percentage

point of their objectively estimated flood probability (indicated by the grey region of the

top-left cell in figure 4). The remaining respondents, who had perceptions that differed from

the objective estimates by at least 1 percentage point, were mostly pessimistic (41 percent;

red region), perceiving that the likelihood of flooding was greater, with the balance being

optimistic (30 percent; blue region). As we increase the margin-of-error (moving from first

to last column), ”accuracy” of flood probability risk perceptions increases, with very few

19Zeros populate the diagonal of this table due to the nature of the flood zone classifications FEMA has
created. Those in the SFHA classification cannot be pessimistic since SFHA flood probabilities are
unbounded above. Similarly, zone X is bounded below at zero meaning being optimistic is not possible
in this zone. Zone X500 residents could have been correct if they reported a flood probability between
0.2 percent and 1 percent, though we found no evidence of this result.

20Table B1 (in the appendix) reports the raw data values used to construct figure 4
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inaccurate assessments when allowing for a (rather large) 50% error margin. There is no

overwhelming trend in the accuracy of flood risk probability perceptions. At almost every

reasonable margin-of-error, a significant proportion of individuals can be classified as having

pessimistic, correct, and optimistic perceptions.

Alternatively, perceptions of flood damage tend to be overwhelmingly pessimistic. Using

a 1 percentage point margin-of-error suggests that more than 90 percent of the sample

overestimated the extent of damage in the event of a flood, regardless of the flood’s return

period. Even when applying larger margins-of-error, the general tendency to overestimate

damages is evident; only about 20 percent of respondents reported expected flood costs

that were within 10 percentage points of objective estimates. Applying an extremely large

50 percentage point margin-of-error still only results in about half of respondents having

correct flood damage perceptions.

Employing objective damage estimates from 1-foot, 5-foot, and 10-foot inundation levels,

however, suggests greater variation in accuracy of perceptions, with a significant portion of

the sample having pessimistic and optimistic perceptions regardless of the permitted margin-

of-error. Nonetheless, we note that these levels of water inundation represent exceedingly

rare events. For example, First Street data suggest the average inundation level in our

sample for a 500-year flood is 1.45 feet (though the standard deviation is large, at 5.13

feet, and the maximum is 13.22 feet). This suggests the pessimism evident from comparison

to floods of standardized return periods primarily stems from an overestimation of water

inundation levels associated with routine flood events, rather than misunderstanding the

damage associated with a given level of water inundation. Figure 5 displays the share of

respondents that had correct beliefs (grey) regarding the probability of a major hurricane

strike,21 as well as those that thought the likelihood was greater (pessimistic - red) and less

likely (optimistic - blue). Since hurricane strike probabilities are the same for all residents

in the same county, we report the accuracy of perceptions for each county individually

in addition to an aggregate metric. Overall, individuals in our sample tend to be overly

pessimistic in their beliefs about the likelihood of a major hurricane strike, regardless of

county of residence. Using a one percentage point margin-of-error suggests 71 percent of

individuals overestimate the probability of a major hurricane strike. Applying a larger 5

percentage point margin-of-error results in slightly over half of respondents having correct

21Table B2 (in the appendix) reports the raw data values used to construct figure 5
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perceptions, but with a large share of individuals still overestimating the probability of a

strike. Decomposing accuracy of perceptions by county and elicitation method indicate

similar patterns, with no major deviations being obvious when compared to the pooled

results.

5.2. Determinants of Risk Perceptions

Table 3 reports regression results for the analysis using the IHS transformed difference be-

tween subjective and objective flood probability as the dependent variable. Column 1 reports

results using a median regression while the remaining columns report quantile regression co-

efficients at the 25th, 50th, and 75th percentile. Generally, level of worry over loss of home,

coastal tenure, education level, flood experience, primary home ownership, and risk designa-

tion associated with First Street Foundation are significantly correlated with divergence of

subjective and objective risk perception. Given the functional form, we focus on elasticities

and average marginal effects evaluated above or below the median (or in the appropriate

quantile).

Table 4 reports elasticities (for continuous covariates) and average marginal effects (for

binary covariates)22 based on the coefficient estimates reported in table 3. The average

difference in subjective and objective flood measures below (above) the median is -0.165

(0.124). For those below the median (optimistic risk perceptions), we estimate the following

elasticities:23. relative worry = 1.241; coastal tenure = -0.356; education = 3.087; income =

-0.317; wealth = -0.094; and past-flood = 0.11. Thus, for those with optimistic perceptions

of flooding, worry over loss of home decreases the difference between subjective and objective

risk estimates (i.e. the difference becomes less negative), which indicates their perceptions

of risk are more accurate (moving 1.241% towards zero for every 1% increase in the relative

worry index); education and previous flood experience have similar effects, with education

exhibiting the largest elasticity of 3.087 and a small elasticity of 0.11 for past floods. Alter-

natively, increases in coastal tenure, income, and wealth have the opposite effect and tend

to correlate with more optimistic and less accurate risk perceptions. A one-percent increase

22Average marginal effects for our binary variables are equivalent to the raw regression coefficients reported
in table 3. We report them again in table 4 to aid in interpreting and comparing results

23Since the dependent variable is negative for this group of respondents, we calculate elasticities using
absolute value of the dependent variable
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in coastal tenure increases the degree of optimism by 0.36%, while a one-percent increase in

income (wealth) increases optimism by 0.32% (0.09%).

For those above the median (pessimistic risk perceptions), we estimate the following elas-

ticities: relative worry = 0.633; coastal tenure = -0.124; education = 1.496; income = -0.166;

wealth = -0.048; and past-flood = 0.048. The positive elasticities imply moving further away

from risk perception parity. Thus, a 1% increase in worry makes the difference in probabili-

ties increase by 0.63% (moving further away from zero). A one-percent increase in education

increases the difference among subjective and objective risk measures by 1.5%, while a one-

percent increase in past floods increases the difference by 0.05%. Coastal tenure, income,

and education have opposite effects. A one-percent increase in coastal tenure reduces the

difference in probabilities by 0.12%. A one-percent increase in income (wealth) decreases the

difference by 0.17% (0.05%).

Focusing on average marginal effects for binary covariates (Panel B of table 4), we find

evidence that primary residence and location in SFHA (as identified by First Street Foun-

dation) tend to have lower values of the outcome variable (marginal effects of -0.035 and

-0.082 respectively).24 This implies those with optimistic perceptions (below median) tend

to be more optimistic for their primary home and when they are in a flood zone identified

by First Street Foundation. For pessimistic respondents (above the median), primary home

ownership and presence in First Street SFHA is associated with more accurate flood risk

perceptions (closer to zero).

The last 3 columns of table 4 report elasticities and marginal effects based on the quantile

regression. The average difference in subjective and objective flood measures at the lower

quantile (below 25th percentile) is -0.24. The middle quantile (between 25th and 75th

percentile) had a mean difference of 0.01 while the upper quantile (above 75th percentile) had

a mean difference of 0.20. Elasticities are qualitatively equivalent to the median regression

in the sense that the upper and lower quantiles exhibit the same signs, but the interpretation

depends upon whether the level of dependent variable is above or below zero. For example, a

one-percent increase in relative worry increases the difference among subjective and objective

24Due to the median regression providing a single regression coefficient and marginal effects being calculated
based on the change from 0 to 1 for both lower and upper quantiles, the marginal effects are the same
for both quantiles of the median regression based results. Because of this, quantile regression results
provide a more nuanced view of the effects of the binary covariates across the distribution of flood risk
perceptions.
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risk probabilities by 0.5% (moving closer to zero) for those in the lower quantile, while the

difference increases by 0.38% for those in the upper quantile (moving away from zero). For

the middle quantile, a large elasticity of 4.5% is estimated (partly due to the small average

difference in this quantile (0.01), which increases the magnitude of the elasticity). Patterns

are similar across other covariates.25

Turning to determinants of perceptions of damage, table 5 reports coefficient estimates

for the OLLExGa regression, which models the differences in subjective and objective per-

ceptions of flood damage associated with 100-year flood (for which all differences are weakly

positive, meaning responses were either roughly correct or pessimistic). Regression results

indicate that longer coastal tenure is associated with a larger difference in perceived and ob-

jective perceptions of flood damage (elasticity of 0.08), suggesting increasing bias in percep-

tions. Similarly, survey respondents identifying as female had a increased bias in perceptions

of flood damage (marginal effect of 0.31). Higher levels of education, on the other hand,

were correlated with lower values of the dependent variable indicating lower levels of flood

damage perception bias (elasticity of -1.12).

The FEMA-designated SFHA zone and the First Street Foundation’s SFHA equivalent

had opposite signs, but of similar magnitudes. Residing in a FEMA-designated SFHA zone

corresponded to decreased bias in perceptions (marginal effect of -0.45), while residing in

the First Street equivalent of a SFHA was correlated with increased bias (marginal effect of

0.40).

5.3. Probability Weighting vs Misperceptions

Figure 6 plots subjective flood probabilities against objective flood probabilities along with

each estimated weighting function. Root mean squared error for each estimated weighting

function is reported in the legend (in parentheses) and can be interpreted as the expected

difference between the predicted and actual subjective probability if any one individual in

the sample had their subjective probability predicted using only their objective probability

as the input. Overall, modeling individuals as agents who engage in probability weighting

does not appear to offer any notable advantage over a reduced-form model. Estimation of

25Table C1 reports regression coefficients for differences in subjective and objective hurricane risk proba-
bilities for the full sample and a model with outliers (those with implied annual probabilities of 80% or
greater) trimmed, and table C2 reports corresponding elasticities and marginal effects.
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a standard reduced-form beta regression, that uses only the objective probability of a flood

as a co-variate, results in a RMSE of 0.129. Some of the structural specifications that em-

ploy probability weighting functions produce very similar RMSE values, but none of them

are notably better than a standard beta regression26. This suggests that the differences in

observed objective and subjective flood probabilities are not easily explained using any of

the literature’s canonical weighting functions. This is consistent with the narrative that in-

dividuals exhibit idiosyncratic mis-perceptions rather than systematic weighting of objective

probabilities.

Visual inspection reveals that any increasing, monotonic function will have a difficult time

fitting “L-shaped” empirical observations27. A well-fitting function must simultaneously

explain the large number of individuals with low objective probabilities but high subjective

probabilities and the substantial number of individuals with high objective probabilities but

low subjective probabilities. The monotonicity assumption of probability weighting functions

is problematic in this regard. For example, a function that fits the vertical portion of the

“L”, (such as the power weighting function in figure 6), cannot decrease to pass near the

data points in the lower right corner (those who under-estimate flood risk).28

6. Discussion

Employing recent advances in assessment and distribution of household-level flood risk mea-

sures produced by First Street Foundation, we provide a detailed assessment of objective

and subjective measures of flood and hurricane risks. With respect to flood risk, our find-

ings suggest no broad generalization regarding flood probability perceptions. Pessimistic,

optimistic, and approximately correct flood probability perceptions are all well represented

26The Goldstein-Einhorn weighting function has a RMSE that is 0.001 lower than a fitted linear function.
27Interestingly, Botzen et al. (2015) also plot objective and subjective flood probabilities (figure 1) which

generates a similar looking figure to our own.
28One potentially promising way forward is to classify individuals’ probability distortions prior to estimation

of the probability weighting function, then estimating unique probability weighting functions for each
group. If a set of observables could be identified that reliably segments individuals into the vertical
and horizontal portions of the “L” in figure 6 then almost any weighting function could conceivably fit
each segment much better than a single weighting function estimated on the full sample. Supervised
machine learning techniques could be quite useful in this case (due to the superior regularization routines
associated with them) since traditional economic theory does not provide strong guidance on the set of
observable to use for this task. Unfortunately, the sample size here is too small to be appropriate for
most machine learning techniques; thus this task remains as an avenue for future research.
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in our sample. This result is most closely aligned with (Mol et al., 2020) who also find most

individuals’ risk perceptions were incorrect, but optimistic and pessimistic outlooks were

both well represented in their sample of Dutch households.

With respect to expected flood consequence, the vast majority of individuals tend to

overestimate the damages associated with a flood, regardless of the flood return period.

This result is notably different from findings in the previous literature which have looked at

perceptions of flood damage. Botzen et al. (2015) find individuals typically underestimate

damage and Mol et al. (2020) find individuals underestimate water levels but generally

have correct damage perceptions, conditional on water level; when damage perceptions are

incorrect, they are more likely to be underestimates than overestimates. When we compare

elicited damage perceptions against estimated damage from 1ft, 5ft, and 10ft (which are

exceedingly rare events) of water inundation, we find that most perceptions of damage are

still incorrect, but that pessimistic and optimistic perceptions are much more balanced.

This suggests that individuals are generally overestimating the inundation associated with

a routine flood rather than misunderstanding the relationship between damage and a fixed

level of water in the home.

An important distinction among the studies that have purported to assess deviations

of subjective and objective risk perceptions is the instrument that is applied to measure

subjective risk. Barseghyan et al. (2018) advocate for direct probability queries on the basis

of the potential of subjective risk measures to improve structural analysis of risky decisions.

This approach, however, is not a panacea for analysis of risk preferences and is accompanied

by its own set of problems. Direct acquisition of subjective probabilities may provide the most

precise elicitation format, yet may be challenging for less numerically literate respondents.

Although a number of studies champion direct measurement of probabilities (Manski, 2004;

Hurd, 2009; Delavande, 2014), other literature has noted the proclivity to round answers

when answering open ended probability questions, particularly near the limits of the unit

interval (Dominitz & Manski, 1997; Manski & Molinari, 2010). de Bruin et al. (2002) suggest

that the tendency for 0.5 to be over represented in probabilistic responses is evidence of

epistemic uncertainty rather than an expression of a precise belief. Presenting probability

as a count over a number of years is advantageous in this regard (as we did in our elicitation

of hurricane probability perceptions), as there is no natural midpoint for respondent’s to

default to. Although elicitation of expected frequencies over a set time period did eliminate
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the tendency to cluster at the midpoint of 50%, it also produced a large number (relative

to our direct, open ended, probability queries) of subjective probabilities equal or close to

100%.

Within the context of survey data, authors have used open-ended queries (Botzen et al.,

2015; Royal & Walls, 2019), relative risk indicators (Royal & Walls, 2019), and aided direct

probability queries (i.e. questions accompanied with visual depictions or predefined intervals)

(Mol et al., 2020; Bakkensen & Barrage, 2022) to measure likelihood of flooding. It is unclear

the extent to which these different instruments are capable of assessing latent risk perceptions

that drive past or future decisions. Also important are aspects of mental accounting that

may influence how individuals frame and bracket risk evaluation (Barseghyan et al., 2018).

We employ open-ended measures for assessing general flood risk, which may induce error

(perhaps only among some respondents), and we utilize an expected hurricane count to infer

annual hurricane probability, which may also have limitations. Within the hurricane count

instrument, we use both open-ended and multiple choice (during different survey waves).

We find that minor changes in question format significantly affect individual responses

across the two random samples. The open-ended format for expected hurricane count re-

sults in a mean probability hurricane strike of 0.25, while the multiple choice format (which

retained the option to write in any value) results in a mean probability of 0.09.29 Nonethe-

less, we found format had little effect on the classification of individuals’ beliefs about the

probability of a hurricane strike; under both elicitation methods, individuals tended to over-

estimate the likelihood of a hurricane. Future research that tests and expands on the im-

plications of using different elicitation methodologies in the domain of natural hazard risk

could be helpful for informing appropriate methods for future studies.

We find that the inverse-hyperbolic sine transformation and quantile regression provides

a useful method to analyze the difference among objective and subjective risk assessments.

In addition, to account for bimodal distribution, we use the “odd log-logistic exponential

Gaussian” distribution (OLLExGa) to analyze determinants of differences in objective and

subjective perceptions of flood damage. Results from the reduced-form regressions provide

deeper insight into the sources of heterogeneity that are observed in the accuracy of the

elicited risk perceptions and echo some of the findings in the previous literature. For example,

29A Kolmogorov-Smirnov test rejects the null (p-value ≈ 0.000) that the distributions of elicited probabilities
across the two methods are equal.
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research has highlighted the role that past flood experience has on perceptions of flood

probability (Botzen et al., 2015; Royal & Walls, 2019; Mol et al., 2020). Similarly, other

results presented here also appear to be robust throughout the literature such as the role

that worry plays in risk perceptions (Botzen et al., 2015; Mol et al., 2020). For each of these

measures, we find that they tend to decrease differences in perception of flood risk loss for

optimistic individuals (making them more accurate), but increase differences for pessimistic

individuals (making them less accurate), and these results hold for quantile regression models

(that permit different signs above and below the median).

Other results appear to be new to the literature. Using survey data to estimate income

and wealth, we find that these measures increase optimism for those that perceive risks as

less than objective estimates; this could reflect increased capacity to manage risk inducing an

optimism on level of risk. For respondents that exhibit pessimistic beliefs, however, we find

that income and wealth both decrease pessimism, making perceptions more accurate. More-

over, moving from median to quantile regression, we find divergent impacts of income and

wealth; in that framework, income has an asymmetric effect on differences among subjective

and objective risk (less optimistic and more pessimistic), while wealth has the opposite effect

(increasing optimism and decreasing pessimism).

Location in the First-Street-designated SFHA exhibits negative marginal effects in the me-

dian regression for flood probability, while the FEMA-designated SFHA exhibits a negative

but statistically insignificant effects. The negative effects for FS-SFHA suggests optimistic

individuals are more optimistic in the FS-SFHA, while pessimistic individuals are less pes-

simistic. Since FEMA flood zones are currently the most publicized sources of flood risk

information, it is perhaps not surprising that they play little role in mis-perceptions. To

the extent that First-Street flood zones provide better estimates of parcel-level flood risk,

it is notable that pessimism declines, but optimism increases. These results are robust to

quantile regression (which permits divergence of the direction of effect above and below

the mean). Overall, the results suggest the FS-flood risk designations are reflected in risk

mis-perceptions, but exhibit asymmetries with respect to optimism and pessimism. For per-

ceived flood damage, however, the sources of flood risk information exhibit opposite signs,

with FEMA-SFHA associated with lower difference in damage perceptions and First Street

exhibiting a larger difference.

Finally, our results focused on trying to explain the observed difference between subjective
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and objective perceptions of flood likelihood via models of probability weighting complement

a broader literature focused on estimating risk preferences with field data (see Barseghyan et

al. (2018) for a review). Estimation of structural risk preferences from an agent’s observed

choices is fairly straightforward in laboratory environments since the probability of outcomes

is explicitly stated and precisely controlled. In a field context, for example observing an

actual insurance contract purchase, its not clear if agent’s internalize and act on the objective

probability of each state of the word - i.e they may misperceive the true risk.

For studies that find incorporating probability distortions to be an important component

to achieving good model fit when estimating risk preferences from field data (Barseghyan

et al., 2013b; Collier et al., 2021), a dilemma persists on whether the distortions should

be attributed to non-linear weighting of probabilities or idiosyncratic misperceptions of true

probability. In some specific cases, it is possible to distinguish between probability weighting

and misperceptions (Barseghyan et al., 2013a), but the conditions necessary to do so are not

universally present. Our results suggest that distortions observed between objective and

subjective probabilities, at least in the context of flood risk, cannot generally be explained

by probability weighting - a finding that is notable for future studies making use of field data

to estimate behavioral model parameters.

7. Conclusion

Using a novel survey data set representing homeowners from three distinct locations on the

U.S. East coast, this study elicits individual perceptions of natural hazard risk and compares

them to equivalently defined objective risk metrics to gauge the accuracy of perceptions.

Individuals who underestimate the probability of a flood, overestimate the probability of a

flood, and those with correct perceptions are well represented in the survey sample. With

respect to perceptions of personal home damage in the event a flood occurs, however, we

find the vast majority of survey respondents overestimate the cost of flood damage. We find

evidence that this overestimation of flood damage is primarily a result of overestimating the

level of water inundation, rather than the destructiveness of a given level of water. Similarly,

we assess the accuracy of perceptions regarding a major hurricane strike and find that the

vast majority of individuals overestimate the likelihood of a major hurricane making landfall

in their county of residence; moreover, subjective perceived hurricane risk exhibits framing
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effects arising from question format (open-ended frequency count v. multiple-choice).

In addition to assessing the accuracy of risk perceptions, we examine the determinants of

divergence of risk perceptions via estimation of several reduced-form regressions. For prob-

ability of flood loss, we utilize median and quantile regressions to evaluate how differences

in objective and subjective vary with individual and household variables, and we utilize

bimodal regression to evaluate similar effects for differences in flood damage. Worry over

home loss, coastal tenure, education, flood experience, flood risk, primary home ownership,

income, and wealth tend to vary systematically with differences in subjective and objective

risk measures. Of note, quantile regression results suggests that household income has an

asymmetric effect on differences among subjective and objective risk, rendering those with

optimistic assessment of flood risk less optimistic, but those that are pessimistic in their

assessment of flood risk and more pessimistic. Household wealth, on the other hand, has the

opposite effect, increasing optimism among the optimistic and decreasing pessimism among

the pessimistic. These results suggest that relative risk perception exhibits divergent under-

lying effects in relation to covariates that could be indicative of fundamental differences in

formation or evolution of risk perceptions. Also of note, we find significantly different im-

pacts associated with FEMA and First Street flood risk designation that could be indicative

of local understanding of flood risk factors that are not captured by the FEMA maps.

Finally, we evaluate deviations among objective and subjective flood probabilities with

six probability weighting functions common to the behavioral economics literature. We

find that the estimated weighting parameters do not explain the probability deviations any

better than a linear regression, suggesting that what we observe is related to idosyncratic

misperceptions rather than some type of widespread behavioral heuristic. It is also possible

that there are heterogeneous framing effects in measuring subjective risk perception that

manifest in different ways depending upon underlying individual characteristics. Validity

of subjective assessment measures is an important topic for future research; lab and field

experiments could be particularly useful in this regard.

26



References

Ameijeiras-Alonso, J., Crujeiras, R. M., & Rodŕıguez-Casal, A. (2019). Mode testing,
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Table 1: Descriptive Statistics

mean sd min max count

Panel A: Subjective Risk Perceptions

Flood Prob. (Subjective) 0.08 0.13 0.00 1.00 566
Hurricane Prob. (Subjective) 0.18 0.25 0.00 1.00 749
Hurricane Prob. (Subjective, Method1) 0.25 0.31 0.00 1.00 391
Hurricane Prob. (Subjective, Method2) 0.09 0.11 0.00 1.00 358
Flood Damage (Subjective) 0.49 0.39 0.00 1.00 473
Hurricane Damage (Subjective) 0.35 0.25 0.05 0.95 876

Panel B: Objective Risk Metrics

Flood Prob. (Objective) 0.09 0.15 0.00 0.50 858
Hurricane Prob. (Objective) 0.04 0.02 0.02 0.06 894
5yr Flood Damage (Objective) 0.00 0.02 0.00 0.29 661
10yr Flood Damage (Objective) 0.01 0.05 0.00 0.41 661
100yr Flood Damage (Objective) 0.04 0.10 0.00 0.54 661
500yr Flood Damage (Objective) 0.07 0.15 0.00 0.60 661
1ft Flood Damage (Objective) 0.19 0.04 0.12 0.22 663
5ft Flood Damage (Objective) 0.36 0.06 0.29 0.41 663
10ft Flood Damage (Objective) 0.51 0.05 0.44 0.55 663

Panel C: Other Household Characteristics

Relative Worry 0.15 0.05 0.05 0.43 575
Primary Home 0.79 0.41 0.00 1.00 807
Coastal Tenure 13.31 13.81 1.00 80.00 861
SFHA 0.38 0.49 0.00 1.00 894
SFHA (First Street) 0.54 0.50 0.00 1.00 858
Education 16.45 3.07 10.00 20.00 894
Female 0.32 0.47 0.00 1.00 869
Income 153868.50 81885.28 35000.00 284280.28 841
Wealth 547678.03 724306.02 16222.22 6416000.00 825
Past Flood 0.10 0.31 0.00 2.00 883

32



Table 2: Share of Respondents with Perceptions Compatible with SFHA status

Probability

All Respondents SFHA (Zones A,V) X500 X

Pessimistic 0.309 0 0.413 0.707
Correct 0.383 0.71 0 0.293
Optimistic 0.265 0.29 0.527 0
N 566 245 150 147
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Table 3: Determinants of Difference in Subjective and Objective Flood Probability

Median Regression Quantile Regression

50th Pct 25th Pct 50th Pct 75th Pct
Relative Worry 0.1487∗∗ 0.0344 0.1487 0.3228∗

(0.0743) (0.0930) (0.1315) (0.1656)
Coastal Tenure -.00047∗ -.00015 -.00047 -.00109

(.00025) (.0003) (.00037) (.00069)
Education .00321∗∗ .00143 .00321 .00044

(.00146) (.00231) (.00234) (.00262)
Income -3.8e-08 7.8e-09 -3.8e-08 6.0e-08

(5.8e-08) (7.0e-08) (6.3e-08) (1.2e-07)
Wealth -3.5e-09 -9.4e-09 -3.5e-09 -1.3e-08∗∗

(2.7e-09) (7.7e-09) (4.5e-09) (6.3e-09)
Past Flood .03664∗∗∗ .02528 .03664 .08569

(.01111) (.02942) (.02477) (.05913)
Primary Home -.03638∗∗∗ -.02236 -.03638∗∗ -.01986

(.00754) (.02176) (.01585) (.01685)
SFHA -.00356 -.0114 -.00356 .00534

(.00761) (.02009) (.01104) (.01418)
SFHA (First Street) -.08347∗∗∗ -.29326∗∗∗ -.08347∗∗∗ -.06785∗∗∗

(.01201) (.03805) (.01581) (.01587)
Female .01446 .01116 .01446 .04328∗∗

(.01213) (.01377) (.01397) (.02105)
Constant -.01342 -.0015 -.01342 .02883

(.02617) (.04161) (.04411) (.0584)
Observations 381 381

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Elasticities and Average Marginal Effects for Flood Probability Regres-
sions

Median Regression Quantile Regression

Lower Upper Lower Middle Upper
Quantile Quantile Quantile Quantile Quantile

Panel A: Elasticities

Relative Worry 1.241 0.633 0.463 4.486 0.378
(0.001 , 2.457) (0.001 , 1.254) (0.207 , 0.742) (0.795 , 7.948) (-0.017 , 0.759)

Coastal Tenture -0.356 -0.124 -0.104 -1.219 -0.07
(-0.732 , 0.021) (-0.255 , 0.007) (-0.161 , -0.05) (-2.07 , -0.354) (-0.153 , 0.013)

Education 3.087 1.496 0.075 0.675 0.056
(0.261 , 5.709) (0.126 , 2.766) (-0.643 , 0.807) (-6.456 , 7.873) (-0.595 , 0.705)

Income -0.317 -0.166 0.09 0.799 0.069
(-1.279 , 0.597) (-0.669 , 0.313) (-0.121 , 0.301) (-0.802 , 2.448) (-0.191 , 0.35)

Wealth -0.094 -0.048 -0.062 -0.563 -0.045
(-0.234 , 0.047) (-0.118 , 0.024) (-0.131 , 0.01) (-0.934 , -0.19) (-0.088 , -0.001)

Past Flood 0.11 0.048 0.039 0.357 0.085
(0.038 , 0.174) (0.017 , 0.076) (0.012 , 0.065) (0.154 , 0.554) (-0.029 , 0.201)

Panel B: Average Marginal Effects

Primary Home -0.035 -0.036 -0.021 -0.037 -0.019
(-0.05 , -0.021) (-0.051 , -0.021) (-0.062 , 0.018) (-0.07 , -0.005) (-0.052 , 0.013)

SFHA -0.003 -0.003 -0.011 -0.004 0.006
(-0.017 , 0.01) (-0.017 , 0.011) (-0.047 , 0.025) (-0.026 , 0.017) (-0.023 , 0.031)

SFHA (First Street) -0.082 -0.083 -0.282 -0.083 -0.066
(-0.104 , -0.059) (-0.105 , -0.059) (-0.352 , -0.211) (-0.115 , -0.053) (-0.096 , -0.034)

Female 0.015 0.015 0.011 0.014 0.042
(-0.008 , 0.037) (-0.008 , 0.038) (-0.015 , 0.038) (-0.013 , 0.042) (0.003 , 0.082)

Notes: 95% confidence intervals in parenthesis.
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Table 5: OLLExGa Regression on Difference in Subjective and Objective Flood
Damage

Coefficient Estimate Elasticity Marginal Effect

Relative Worry -0.743 -1.291
(0.481) (-3.09 , 0.281)

Coastal Tenure 0.05** 0.083
(0.023) (0.004 , 0.153)

Education -0.642*** -1.123
(0.108) (-1.879 , -0.567)

Income 0.054 0.086
(0.039) (-0.047 , 0.191)

Wealth -0.083 -0.137
(0.058) (-0.349 , 0.05)

Past Flood 0.099 0.156
(0.1) (-0.195 , 0.419)

Primary Home -0.091 -0.16
(0.064) (-0.378 , 0.062)

SFHA -0.257*** -0.445
(0.079) (-0.769 , -0.175)

SFHA (First Street) 0.239*** 0.402
(0.076) (0.174 , 0.612)

Female 0.199*** 0.311
(0.062) (0.123 , 0.494)

Cons 0.027
(0.348)

Observations 234

Parenthesis contain standard errors for the column containing coefficient estimates. All other columns

report 95% confidence intervals in parenthesis.
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9. Figures

Figure 1: Spatial and Temporal Distribution of Survey Waves
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Figure 2: IHS Transformed Difference Between Subjective and Objective Flood
Probabilities
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Figure 3: IHS Transformed Difference Between Subjective and Objective Flood
Damage
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Figure 4: Share of Respondents with Correct Flood Risk Perceptions
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Figure 5: Share of Respondents with Correct Perceptions of a Hurricane Strike
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Figure 6: Estimated Weighting Function
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Appendices

A. Details on MCMC estimation

As previously noted, for computational feasibility, MCMC methods are employed to esti-

mate the likelihood function for the structural beta regressions that incorporate probability

weighting functions. Given that this is a Bayesian procedure, priors must be assigned to

each parameter being estimated. For all weighting parameters, gamma priors are assigned

with both shape parameters of the gamma function set to 1. This ensures the estimated

weighting parameters are positive (a necessary condition for most of the weighting functions

to maintain theoretical consistency). This prior distribution places 95% of the probability

mass between 0 and 3 which may sound restrictive, but each weighting function can achieve

a very diverse set of curvatures using parameter values restricted to the 0 to 3 interval.

Estimation is conducted using a random walk Metropolis-Hastings sampler meaning each

proposal distribution (which is defined as normal) is centered on the previous iteration. In

total, 110,000 draws are made to estimate the posterior distribution with the first 10,000

draws being discarded as “burn-in” samples. Further, a thinning interval of 10 is applied to

reduce autocorrelation. To check for evidence of non-convergence, a visual inspection of trace

and auto-correlation plots is conducted. Further, the Geweke diagnostic is employed which

tests the null that the first 10% and last 50% of the samples drawn have the same mean

(Geweke, 1992). A rejection of the null is evidence that the Markov chain has not converged.

The null cannot be rejected for any of the parameter estimates at the 10% significance level

indicating no obvious signs of convergence issues.
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B. Tables for Natural Hazard Risk Perceptions Accuracy
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Table B1: Share of Respondents with Correct Flood Risk Perceptions)

Damage

Probability 5 yr 20 yr 100 yr 500 yr 1 ft 5 ft 10 ft

Panel A: 1 Percentage Point Margin of Error

Pessimistic 0.41 0.96 0.96 0.95 0.95 0.70 0.54 0.45
Correct 0.28 0.04 0.04 0.04 0.04 0.03 0.02 0.00
Optimistic 0.30 0.00 0.00 0.00 0.01 0.28 0.44 0.54

Panel B: 2.5 Percentage Point Margin of Error

Pessimistic 0.38 0.92 0.92 0.91 0.90 0.68 0.54 0.44
Correct 0.38 0.08 0.08 0.08 0.09 0.06 0.03 0.03
Optimistic 0.25 0.00 0.00 0.00 0.01 0.27 0.43 0.53

Panel C: 5 Percentage Point Margin of Error

Pessimistic 0.26 0.88 0.88 0.87 0.87 0.65 0.51 0.42
Correct 0.53 0.12 0.12 0.13 0.12 0.12 0.07 0.06
Optimistic 0.21 0.00 0.00 0.00 0.01 0.24 0.42 0.52

Panel D: 10 Percentage Point Margin of Error

Pessimistic 0.12 0.77 0.77 0.77 0.77 0.59 0.49 0.40
Correct 0.71 0.23 0.23 0.23 0.22 0.27 0.14 0.11
Optimistic 0.17 0.00 0.00 0.00 0.01 0.14 0.38 0.49

Panel E: 25 Percentage Point Margin of Error

Pessimistic 0.04 0.62 0.62 0.62 0.61 0.50 0.39 0.34
Correct 0.84 0.38 0.38 0.38 0.39 0.50 0.45 0.28
Optimistic 0.12 0.00 0.00 0.00 0.00 0.00 0.16 0.38

Panel F: 50 Percentage Point Margin of Error

Pessimistic 0.01 0.44 0.43 0.44 0.43 0.36 0.31 0.11
Correct 0.99 0.56 0.57 0.56 0.57 0.64 0.69 0.86
Optimistic 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
N 542.00 312.00 312.00 312.00 312.00 313.00 313.00 313.00
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Table B2: Share of Respondents with Correct Perceptions of Major Hurricane Strike

Probability

Dare Glynn Worcester All Elicitation Elicitation

County County County Counties Method 1 Method 2

Panel A: 1 Percentage Point Margin of Error

Pessimistic 0.705 0.655 0.761 0.709 0.719 0.698
Correct 0.114 0.128 0.151 0.130 0.115 0.145
Optimistic 0.182 0.217 0.088 0.162 0.166 0.156

Panel B: 2.5 Percentage Point Margin of Error

Pessimistic 0.584 0.655 0.563 0.597 0.675 0.511
Correct 0.312 0.291 0.437 0.346 0.263 0.436
Optimistic 0.104 0.054 0.000 0.057 0.061 0.053

Panel C: 5 Percentage Point Margin of Error

Pessimistic 0.370 0.532 0.382 0.418 0.565 0.257
Correct 0.610 0.468 0.618 0.574 0.432 0.729
Optimistic 0.019 0.000 0.000 0.008 0.003 0.014

Panel D: 10 Percentage Point Margin of Error

Pessimistic 0.312 0.389 0.147 0.280 0.435 0.112
Correct 0.688 0.611 0.853 0.720 0.565 0.888
Optimistic 0.000 0.000 0.000 0.000 0.000 0.000

Panel E: 25 Percentage Point Margin of Error

Pessimistic 0.175 0.256 0.080 0.167 0.289 0.034
Correct 0.825 0.744 0.920 0.833 0.711 0.966
Optimistic 0.000 0.000 0.000 0.000 0.000 0.000

Panel F: 50 Percentage Point Margin of Error

Pessimistic 0.110 0.079 0.050 0.083 0.146 0.014
Correct 0.890 0.921 0.950 0.917 0.854 0.986
Optimistic 0.000 0.000 0.000 0.000 0.000 0.000
N 308 203 238 749 391 358
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C. Tables for Hurricane Probability Regressions
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Table C1: Determinants of Subjective Hurricane Probability

Full Sample Outliers Dropped
Relative Worry 0.1081 0.3299∗∗

(0.2637) (0.1447)
Coastal Tenure .00364∗∗∗ .00103∗

(.00107) (.0006)
Education .00731 .00376

(.00479) (.00265)
Income -1.3e-07 8.7e-09

(1.7e-07) (9.7e-08)
Wealth -1.7e-08 -2.2e-08∗∗

(1.8e-08) (9.7e-09)
Past Flood .00115 .02519

(.04538) (.025)
Primary Home -.01795 .00191

(.03103) (.01718)
SFHA -.03614 -.04427∗∗∗

(.02802) (.01544)
SFHA (First Street) -.01784 -.01161

(.02775) (.01526)
Female -.00969 -.00215

(.02809) (.01547)
Constant .02082 -.01912

(.10004) (.05526)
Observations 362 336

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C2: Elasticities and Average Marginal Effects for Hurricane Probability Re-
gressions

Full Sample Outliers Dropped

Panel A: Elasticities

Relative Worry 1.056 3.361
(-4.044 , 6.107) (0.372 , 6.195)

Coastal Tenture 2.723 0.789
(1.22 , 4.295) (-0.077 , 1.604)

Education 7.451 3.854
(-2.059 , 16.896) (-1.44 , 9.189)

Income -1.33 0.112
(-4.861 , 2.226) (-1.822 , 2.035)

Wealth -0.66 -0.785
(-1.91 , 0.593) (-1.552 , -0.088)

Past Flood 0.004 0.153
(-0.545 , 0.565) (-0.147 , 0.466)

Panel B: Average Marginal Effects

Primary Home -0.019 0.002
(-0.079 , 0.043) (-0.031 , 0.036)

SFHA -0.035 -0.043
(-0.091 , 0.019) (-0.074 , -0.012)

SFHA (First Street) -0.017 -0.011
(-0.072 , 0.034) (-0.041 , 0.017)

Female -0.009 -0.002
(-0.064 , 0.047) (-0.03 , 0.027)

Notes: 95% confidence intervals in parenthesis.
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