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Abstract  

Premium subsidies are a common policy tool to promote crop insurance participation in many 
countries. However, the relationship between subsidies and demand is not entirely obvious given 
the variation in the use of subsidies and crop insurance participation within the international crop 
insurance landscape. Focusing on the U.S. Federal Crop Insurance Program (FCIP) demand is 
modeled as a system of equations representing decisions at the intensive [coverage level] and 
extensive [net insured acres] margins. The model makes use of an identification strategy that 
leverages exogenous variation in government-set pricing policy to address potential sources of 
endogeneity. Applying the model to over one million insurance pool level FCIP observations 
spanning two decades (2001-2022) suggest an inelastic response at both extensive and intensive 
margins to changes in producer-paid premium rates with the response to premium rates becoming 
increasingly more elastic as subsidies decrease. These estimated elasticities are on the low end 
compared to previous literature, however, significant heterogeneity across commodity, production 
practices, policy type, and location are observed suggesting subsets of producers are likely to 
respond to changes in the cost of insurance in different ways. 

Keywords: crop insurance, premium rate, subsidies, demand 

JEL codes: Q14, Q18, G22. 

 

 

 

 

mailto:francis.tsiboe@usda.gov
mailto:ftsiboe@hotmail.com


2 
 

The Crop Insurance Demand Response to Premium Subsidies: Evidence from U.S. 
Agriculture 

1. Introduction 

The use of insurance as a tool for agricultural risk management has rapidly expanded and become 

a critical component of the overall suite of support programs for farmers and ranchers in both 

developed and developing countries [1]–[4]. As of 2007, about half of all countries had some sort 

of agricultural insurance generating a total of $15.10 billion in premiums [1]. Relative to 2021, 

this figure is low, especially given that the US, which accounted for more than half of global 

premiums in 2007, has since more than doubled to $13.72 billion in 2021. This growth suggests 

that agricultural insurance is seen as a valuable resource for producers facing increased climatic 

and market uncertainty [5]–[13]. However, global agricultural insurance coverage has historically 

remained relatively low compared to the value of global agricultural output, despite many 

governments attempting to use premium subsidies to increase participation [1].1  

In the U.S., the Federal Crop Insurance Program (FCIP) saw rapid increases in enrolled acreage 

following a series of legislative changes that started in 1980 and increased premium subsidies 

(Figure 1). Despite premium subsidies playing a seemingly significant role in establishing 

increased participation within the FCIP, the relationship between subsidies and demand is not 

entirely obvious. For one, looking at the international agricultural landscape suggests high subsidy 

levels are not a necessary condition for high levels of market penetration. For example, 

Switzerland, Sweden, and Australia have historically had participation rates of 50% or higher 

(measured as a percentage of cropped area insured) despite having no subsidies [1]. 2 

This study seeks to identify the relationship between crop insurance premium subsidies and 

demand for crop insurance. Focusing on the U.S, the empirical analysis leverages 1,174,932 FCIP 

insurance pool level observations spanning 22 years (2001-2022) to estimate the crop insurance 

 
1 In the U.S., cash receipts for agricultural products (livestock and crops) totaled $437 billion [60]. Total FCIP insured 
liability (livestock and crops) for the 2021 crop year totaled $151 billion [61] representing about 35% of total 
agricultural production (this same metric is approximately 57% when livestock are excluded from both cash receipts 
and FCIP liabilities). 
2 Cropped area insured is defined as the area of land with crops currently being cultivated. As of 2007, crop insurance 
penetration rates for privately offered hail and named peril crop insurance were 75% of cropped area insured in 
Switzerland, 52% in Sweden, and 50% in Australia [1]. 
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demand response to changes in producers’ out-of-pocket cost.3 Demand is modeled via a multi-

equation structural model of crop insurance demand at the intensive and extensive margins 

measured by coverage level and insured acres, respectively. An identification strategy is used that 

leverages the exogenous variation in USDA, Risk Management Agency (RMA) policy parameters 

to instrument for endogenously determined variables in the model. The empirical model includes 

insurance pool fixed effects to control for invariant confounders.   

Estimation of the model yields results that suggest a relatively inelastic crop insurance demand 

response, to changes in producer-paid premium rates, at both the intensive (-0.022) and extensive 

(-0.052) margin. However, applying the results across a range of potential subsidy levels suggests 

that the crop insurance demand response to premium rates change depending on the underlying 

level of premium subsidies. Specifically, the demand response becomes increasingly elastic as the 

premium subsidy rate decreases. Further, decomposing results by observable insurance pool 

characteristics suggest that subsets of producers respond very differently based on the produced 

commodity, production practice (i.e., irrigated, certified organic), type of insurance policy, and 

location. This suggests that even though estimated demand elasticities are relatively small at the 

most aggregate level, changes in the subsidy rate are still capable of dramatically altering the 

observable characteristics of the crop insurance market. 

This study contributes to the literature in several ways. First, the empirical approach in this study 

is one of the few to estimate demand elasticities in the context of the modern crop insurance policy 

landscape. Within the U.S. and the FCIP, a large literature has estimated the elasticity of demand 

for crop insurance with many existing studies characterizing demand as being inelastic [14]–[23]. 

This, in turn, has been used to fuel perennial arguments focused on premium reductions as a 

potential cost-saving measure for the FCIP [3], [24]–[30]. However, the results drawn from the 

bulk of existing literature may not necessarily generalize to the modern policy era since most 

existing studies are based upon historical iterations of the FCIP which offered notably different 

insurance products compared to what is available today (post-2000) [see Figure 1]. Additionally, 

the 2001/2002 crop season saw the introduction of RMA’s continuous rating formula which 

significantly altered the actuarial relationship between producer characteristics/choices and 

 
3 An insurance pool is a group of producers with similar contract characteristics (commodity, production practices, 
location, and policy type) that are treated similarly from the point of view of the FCIP premium rating process. 
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premium rates [31].4 Consequently, it’s not obvious that results drawn from analysis before the 

early 2000s generalize to the modern crop insurance policy environment. 

Second, the analysis in this study is one of the few to utilize instrumental variable techniques to 

address the endogenous relationship between “price” (i.e., the premium rate) and “quantity 

purchased” (total premiums paid, liability, acreage insured, coverage level, etc.). This source of 

endogeneity is partly attributable to the fact that “risk” serves as a key component in the pricing 

of insurance, but it is not directly observable, creating a case of omitted variable bias. Additionally, 

empirical researchers must contend with the fact that sound actuarial practice dictates that premium 

rates increase with coverage levels to reflect the increased probability of indemnification at higher 

levels of coverage (and corresponding lower deductibles). This creates a source of simultaneity 

bias in a regression framework [32].5 Further, subsidy rates within the FCIP vary by chosen 

coverage level, with higher coverage levels receiving lower subsidy rates which enhances the 

deterministic relationship between a chosen coverage level and premium rates.6 

Some existing studies have utilized Heckman-type models of participation [18], [33], [34] to 

address endogeneity. However, these studies remain in the minority. To the best of knowledge, 

Woodard and Yi (2020) is the only study that utilizes an instrumental variables strategy to provide 

estimates of crop insurance demand elasticities for the modern FCIP policy environment. By using 

a parsimonious functional form, they estimate a pair of rating parameters to describe the observed 

relationship between premium rates and coverage levels which they then use as instruments in 

their analysis. However, as discussed later, using estimated instrumental variables potentially 

introduces an alternative source of estimation error. Alternatively, the approach in this study makes 

use of observed RMA-rating parameters – i.e., the exact rating parameters set by RMA.  

 
4 Before the continuous rating formula, RMA published Base Premium Rates for APH-based crops using a fixed rate 
for a span of yields, which was typically nine rate spans (R-span) per crop. The continuous rating formula develops a 
rate for each yield rather than for ranges of yields as the R-span does. Recent work shows that the main component of 
the continuous rating formula that induces rating heterogeneity amongst farmers does a relatively good job of 
incorporating soil information into rates when a long yield history is used to approximate the farmer's yield [62].  
5 In other words, plotting premium rates against chosen coverage levels forms an upward sloping relationship (see 
Woodard and Yi [2020], Figure 1 for example) that, in the absence of an identification strategy capable of addressing 
endogeneity, would result in the conclusion that demand for insurance at the intensive margin rises as the price of 
insurance rises.  
6 A couple of government reports acknowledge this issue and note the need for alternative identification methods to 
eliminate simultaneity bias [63], [64]. 
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Third, by using more granular level data (i.e., by disaggregating observational units into insurance 

pools within each county), the study minimizes the potential for aggregation bias by using 

observational units with similar crop insurance contract characteristics, and by extension similar 

production characteristics. This coupled with the attention to endogeneity and focus on the modern 

crop insurance policy environment means this study address three potential sources of bias. 

Although each of these sources of bias has been addressed separately in previous literature, to our 

knowledge, this study is the first to deal with each simultaneously. Additionally, by defining the 

observational unit as an insurance pool, it is possible to decompose results by observable 

characteristics which include the commodity produced, irrigation practice, organic certification, 

type of insurance policy, insurance unit structure, and location. This exercise is particularly 

noteworthy given the varied (and sometimes counteracting) elasticities observed across segments 

of the crop insurance market; this could be potentially important for designing policies that are 

effective at achieving their stated goal. 

The rest of this paper is organized as follows. Section 2 describes the conceptual framework which 

is used to motivate the empirical analysis. Section 3 presents the data sources and discusses the 

construction of relevant variables for the analysis. Section 4 formally defines the empirical model 

while section 5 outlines the identification strategy. Section 6 presents the empirical results, while 

section 7 discusses the results and implications for policymaking. Section 8 concludes.  

2. Conceptual Framework  

An extensive literature has developed several conceptual frameworks that are of interest to this 

study. While insights are drawn from a few of these [16], [17], [19], [20], [32], [35], the theoretical 

structure used to link premium rate responsiveness to premium subsidies in this study is novel in 

the sense that it is based on the actual premium rating framework within the modern FCIP and 

explicitly accommodates crop insurance demand at both the extensive and intensive margins 

simultaneously.  

In the FCIP, producers can choose among policies that protect against a shortfall in yields or 

revenue with indemnity payments being conditional on either individual production (or revenue) 

or group-level production. Since the conceptual framework is designed to motivate and provide 

background for the empirical analysis, the focus is given to individual-level yield protection 

policies. Ideally our conceptualizations should include production inputs (i.e., land, fertilizer, 
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labor, chemicals, etc.) as endogenous variables to be determined in addition to the endogenous 

crop insurance choices. Our empirical analysis is at the insurance pool level sourced from RMA’s 

loss experience database, which does not come with the level of input usage (i.e., planted acres). 

Thus, following Coble et al. (1996), we assume that the representative producer is making crop 

insurance choices after having made production decisions. This is a reasonable assumption given 

that marketing and production contracts are widely used in U.S. Agriculture [36], [37] and forward 

contracting of inputs in production agriculture is becoming increasingly important as more farmers 

attempt to manage risk [38].7 

Consider a representative producer who allocates a fixed number of arable acres (A) to crop 

production at a fixed cost of 𝐶𝐶(A) tied to acres. The revenue associated with producing A acres of 

the crop is 𝑦𝑦𝑦𝑦A, where 𝑦𝑦 is the stochastic non-negative yield of the crop and 𝑝𝑝 is its marketed 

price. Conditional on availability, the producer can choose to insure expected crop yield at a 

coverage level of 𝜃𝜃 via a crop insurance contract with a respective yield guarantee of 𝜃𝜃𝑦̈𝑦.8 Current 

FCIP policy stipulates that a producer must elect the level of coverage (𝜃𝜃) and the share (γ) of A 

to insure for a given policy. This study distinguishes between crop insurance demand at the 

intensive and extensive margins via the choice of 𝜃𝜃 and γ, respectively. 

The end-of-season revenue from crop production is the sum of the realized value of 𝑦𝑦 and per acre 

indemnity (𝐼𝐼(𝑦𝑦) =  𝑚𝑚𝑚𝑚𝑚𝑚[0,𝜃𝜃𝑦̈𝑦 − 𝑦𝑦]) times γ𝐴𝐴. In the FCIP, RMA is mandated by law to price 

insurance policies actuarially fairly such that per acre premiums are equal to expected per acre 

indemnities.9 This is represented by the following equation:  

 
7 The effect of crop insurance on production input is well documented in the moral hazard literature (see Tack and Yu 
(2021) for extensive discussions) which is not the focus of our study. We however acknowledge the limitations of this 
assumption and include county planted acreage as a control for regional trends in land use.  
8 In the FCIP, the quantity 𝑦̈𝑦, is known as the approved yield which essentially is a measure of the insured's future 
expected yield. Approved yield calculations are based on the mean of the insured's actual production history (APH) 
which are typically adjusted higher through various mechanisms such as trend adjustments, yield exclusion, and yield 
substitution. 
9 The ratio of total indemnity to total premium (i.e., loss ratio) have been consistently above one for much of the FCIPs 
history, but this phenomenon was mostly observed prior to 1996. Significant underwriting/rating changes were made 
to the FCIP in 1995 and RMA was established in 1996. These legislative changes, along with increases in premium 
subsidies and introduction of the continuous rating formula in 2000/01 helped increase crop insurance participation 
(and in turn, create a more diversified risk pool). Since 1997, annual loss ratios have averaged 0.84. This is in line 
with RMA’s target loss ratio of 0.88 which is designed to cover anticipated losses plus a “reasonable reserve”. 
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𝐸𝐸[𝐼𝐼(𝑦𝑦)] = ∫ (𝜃𝜃𝑦̈𝑦 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑𝜃𝜃𝑦̈𝑦
0          (1) 

where 𝑓𝑓(𝑦𝑦) is the probability density function of 𝑦𝑦. Given the focus of the paper, premiums are 

standardized by insured liability which can be characterized by the following equation. 

 𝜏𝜏(𝜃𝜃) = 1
𝜃𝜃𝑦̈𝑦 ∫ (𝜃𝜃𝑦̈𝑦 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑𝜃𝜃𝑦̈𝑦

0          (2) 

Using Leibniz’s integral rule, Woodard and Yi (2020) showed that premium rates as a function of 

coverage are continuous, twice differentiable, and increasingly convex, i.e., 𝜏𝜏(𝜃𝜃) < 1, 𝜏𝜏(𝜃𝜃) > 0, 

𝜏𝜏(𝜃𝜃) > 0, ∀𝜃𝜃 > 0.  

RMA assumes that 𝑓𝑓(𝑦𝑦) is conditional on an adjustment mechanism that relies on the underlying 

risk profile of the producer seeking insurance. This risk profile is not observable and is 

approximated by the productivity of the producer seeking insurance relative to their peers. 

Specifically, liabilities are known at the time the crop insurance contract is written, whereas 

indemnities are determined via a naturally occurring stochastic process, and thus cannot be known 

with certainty. The FCIP overcomes this by using the so-called “continuous rating formula” which 

adjusts some baseline rate given the insured’s production experience and contract specification. 

The default form of the continuous rating formula is specified according to the following equation 

𝜏𝜏(𝜃𝜃,𝑢𝑢,𝑦𝑦�:𝛼𝛼,𝛽𝛽, 𝛿𝛿,𝑦𝑦�𝑐𝑐) = �𝛼𝛼(𝑦𝑦� 𝑦𝑦�𝑐𝑐⁄ )𝛽𝛽 + 𝛿𝛿�𝜗𝜗(𝜃𝜃)𝜌𝜌(𝑢𝑢)       (3) 

where 𝛼𝛼 and 𝛿𝛿 represent a county base rate and a catastrophic fixed loading factor, respectively, 

for some baseline coverage. In determining producer rates, the base rate is first adjusted with the 

assumption that risk co-varies with yield. This is achieved via the rate multiplier curve expressed 

by (𝑦𝑦� 𝑦𝑦�𝑐𝑐⁄ )𝛽𝛽 which leverages the ratio of the producer’s historic mean yield (𝑦𝑦�) over some county 

reference yield 𝑦𝑦�𝑐𝑐 to make that adjustment. The value of 𝛽𝛽, also known as the continuous rating 

exponent, is assigned a negative value based on early research suggesting that relatively more 

productive farms are at a lower risk of indemnification [39]. Consequently, the county base rate is 

adjusted downward for farms with yields that are higher than the yield represented by the county 

reference yield (i.e., 𝑦𝑦� 𝑦𝑦�𝑐𝑐⁄ > 1). The resulting initial rate 𝛼𝛼(𝑦𝑦� 𝑦𝑦�𝑐𝑐⁄ )𝛽𝛽 + 𝛿𝛿 is then adjusted via the 



8 
 

scaling functions 𝜗𝜗(𝜃𝜃) and 𝜌𝜌(𝑢𝑢) which are tied to the producer’s coverage level, 𝜃𝜃, and insurance 

unit elections, 𝑢𝑢, respectively.10  

The parameters 𝛼𝛼,𝛽𝛽, 𝛿𝛿, and 𝑦𝑦�𝑐𝑐 are the policy variables estimated by RMA for a given insurance 

pool using historical loss data from the FCIP. Even though information on carryover insureds (i.e., 

producers that participated in the FCIP in the past) is used in the determination of the policy 

variables, due to several practices employed by RMA, a single producer does not have appreciable 

influence over the policy variables governing their current or future premium rate. First, a single 

insured producer’s decisions are negligible in influencing the total insurance pool’s characteristics 

given that many individual producers make up a single insurance pool. Second, RMA applies a 

smoothing algorithm to bring new information into the rating process when the county being rated 

contains limited information (too few insured units) or has historically had highly variable loss 

experiences [39]. This process also limits large discontinuities in premium rates between adjoining 

counties. Consequently, even small insurance pools are still rated based on the characteristics of a 

much larger group of nearby producers. 

Since previous levels of yields are fixed and not under the control of producers, FCIP premium 

rates can be thought of as sequentially exogenous.11 The exogenous portion of FCIP premium rates 

(𝜏𝜏(𝜃𝜃,𝑢𝑢,𝑦𝑦�;𝝎𝝎)) are driven by the policy parameter space 𝝎𝝎 ∈ {𝛼𝛼,𝛽𝛽, 𝛿𝛿,𝑦𝑦�𝑐𝑐} and the endogenous 

portion by the insured’s choice of insurance unit 𝜌𝜌(𝑢𝑢), coverage level 𝜗𝜗(𝜃𝜃), and their historic 

production experience 𝑦𝑦�. Finally, in the FCIP, insurance premiums are subsidized at a rate 𝑆𝑆(𝜃𝜃,𝑢𝑢) 

that is tied to coverage level and insurance unit and not to location or the crop. Figure S3 shows 

𝑆𝑆(. ) is decreasing in 𝜃𝜃 and varies by insurance unit. The effective premium rate paid by the 

producer is given by 𝑟𝑟(. ) = �1− 𝑆𝑆(𝜃𝜃,𝑢𝑢)�𝜏𝜏(𝜃𝜃,𝑢𝑢,𝑦𝑦�;𝝎𝝎). Putting all the preceding together, the 

accounting profit relationship of the representative producer’s crop insurance decision after having 

decided on acres of crop production is defined as follows: 

 
10 The value generated by the function, 𝜗𝜗(𝜃𝜃), also known as the coverage level differential factor, increases with 
coverage level (Figure S1), and that generated by 𝜌𝜌(𝑢𝑢), also known as a unit residual factor, increases with insurance 
unit disaggregation (Figure S2). 
11 Premium rates are sequentially exogenous in the sense that yields are not influenced by past premium rates, but 
future yields can influence future premium rates. In other words, current production decisions have no bearing on the 
cost of insurance for the current season.  
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𝜋𝜋(. ) = A𝑝𝑝𝑝𝑝(1 − γ) + 𝐴𝐴𝐴𝐴γ �𝑦̈𝑦 + ∫ (𝜃𝜃𝑦̈𝑦 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑𝜃𝜃𝑦̈𝑦
0 − 𝑟𝑟(. )𝜃𝜃𝑦̈𝑦� − 𝐶𝐶(. )    (4) 

Combining 𝑦̈𝑦 + ∫ (𝜃𝜃𝑦̈𝑦 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑𝜃𝜃𝑦̈𝑦
0 − 𝑟𝑟(. )𝜃𝜃𝑦̈𝑦 with equations (2) and (3) produces the following 

simplified expression, 

 [1 + 𝛤𝛤(𝜃𝜃, 𝑦̈𝑦,𝑢𝑢;𝝎𝝎)𝜃𝜃]𝑦̈𝑦           (5) 

where 𝛤𝛤(∙) is the premium subsidy, the producer receives per dollar of liability expressed as 

𝑆𝑆(∙)𝜏𝜏(∙). Thus, the accounting profit reduces to:  

𝜋𝜋(. ) = A𝑝𝑝𝑝𝑝(1− γ+ γ𝑦̈𝑦[1 + 𝛤𝛤(. )𝜃𝜃]) − 𝐶𝐶(. )        (6) 

Following previous literature[16], [17], [19], [35], the study assumes that the representative 

producer maximizes a mean-variance utility function [40], [41] of the form:  

Max
{𝜃𝜃,γ}

𝑈𝑈 = 𝜇𝜇 − 𝜅𝜅𝜅𝜅           (7) 

Where 𝜇𝜇 and 𝜎𝜎 represent expected profit and the standard deviation of profits, while 𝜅𝜅 is a 

parameter that characterizes the representative farmer’s risk preferences. The respective 

expressions for the mean and variance of farm profits with simplifications adapted from Yu et al. 

(2018) are given by:  

𝜇𝜇 = A𝑝𝑝𝑝𝑝(1 − γ + γ𝑦̈𝑦[1 + 𝛤𝛤(. )𝜃𝜃]) − 𝐶𝐶(. )        (8) 

𝜎𝜎2 = var(max[𝑦𝑦,𝜃𝜃𝑦̈𝑦] γ)          (9) 

The first-order conditions that maximize the producer’s utility are then: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �𝛤𝛤(. ) + 𝜕𝜕𝜕𝜕(.)
𝜕𝜕𝜕𝜕

𝜃𝜃�A𝑝𝑝𝑝𝑝𝑦̈𝑦γ − 𝜅𝜅 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0        (10) 

𝜕𝜕𝜕𝜕
𝜕𝜕γ

= A𝑝𝑝𝑝𝑝(𝑦̈𝑦[1 + 𝛤𝛤(. )𝜃𝜃] − 1) − 𝜅𝜅 𝜕𝜕𝜕𝜕
𝜕𝜕γ

= 0        (11) 

The first-order conditions show that the marginal utility from an additional unit of crop insurance 

at both the intensive (Equation (10)) and extensive (Equation (11)) margins depends on the planted 

acreage, coverage level, insured share, subsidy per liability, and the variance of profit.12 The 

 
12 Alternative utility functions, besides the mean-variance form used here, can generate this same result in the sense 
that the marginal utility of additional units of insurance would still be conditional on a variety of factors that make the 
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subsidy per liability and the variance of profit, in turn, are also dependent on coverage level, 

insurance unit, and 𝑟𝑟(. ). 13  

The channel through which the effective premium rate paid by the producer 𝑟𝑟(. ), affects the 

marginal utility from an additional level of insurance coverage at the intensive and extensive 

margin is dependent on the premium rate and the subsidy the producer will receive per dollar of 

liability insured. In this study’s empirical setting, demand for crop insurance is modeled as a 

function of insurance contract specification, the effective premium rate paid by the producer, and 

other controls with several levels of model flexibilities to estimate the responsiveness of demand 

for crop insurance to changes in premium rates conditional on the level of premium rate subsidy 

level.  

3. Data  

Primary FCIP information for the analysis in this study was retrieved from RMA’s summary of 

business files and contains insurance metrics aggregated by county, crop, crop type (e.g., corn can 

be grain or silage), production practice (e.g., irrigation, organic, etc..), insurance plan (e.g., Actual 

Production History [APH], Yield Protection [YP], Crop Revenue Coverage [CRC], Revenue 

Protection [RP], etc..), coverage level, and insurance unit (Optional unit [OU], Enterprise unit 

[EU], etc..); RMA refers to this data source as “Summary of Business” by “Type, Practice, Unit 

Structure” or “SOBTPU” for short.14 The SOBTPU serves as the foundational data source for the 

study. The study defines the unit of analysis as an insurance pool, i, whose designation is defined 

at the SOBTPU aggregation level without the coverage level disaggregation, in crop year t. All 

pools with insurance plans designated as a group/area/index policy or an endorsement to an 

underlying policy (i.e., Supplemental Coverage Option [SCO], Enhanced Coverage Option [ECO], 

and Stacked Income Protection Program [STAX]) are dropped from the analyses as are pools with 

 
problem of identifying the relationship between subsidy rates and demand for insurance largely an empirical question. 
See for example, Woodard and Yi (2020) who show a similar result using a general utility function..  
13 If planted acres was treated as an endogenous variable in our conceptualization, Equation (7) will be represented as 
Max

{θ,γ,A}
U = μ − κσ in which case a third first order condition characterizing the marginal utility with respect to acreage 

would be necessary �∂U
∂A

= py[1 − γ] + pγÿ[1 − Γθ] − 1 − ∂C
∂A
− κ ∂σ

∂A
�. This can be generalized for any other 

endogenous factor of production.  
14 SOBTPU files for each crop year are available at [66]. 



11 
 

catastrophic, whole-farm-revenue coverage, or micro farm insurance.15 Data from the SOBTPU 

was supplemented with; (1) actuarial information (i.e., design parameters for the FCIP that govern 

the premiums farmers face when making crop insurance decisions) from RMA’s Actuarial Data 

Master (ADM)16; (2) established, projected, and harvest price information for 2001-2022 from 

RMA’s ADM and price addendums; (3) acreage data from Farm Service Agency (FSA) with 

missing data filled in with planted, harvested, and baring acres from USDA National Agricultural 

Statistics Service (NASS) Quick Stats, in that order17; and (4) per-acre cost of crop production was 

approximated with state-level rental rates retrieved from NASS Quick Stats. 

Measures of demand at the intensive margin were calculated using an aggregate coverage level 

defined as 𝜃𝜃𝑖𝑖𝑖𝑖 = 1
∑𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖

∑�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖�, where, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 are the coverage level and net insured acres 

for the jth entry associated with pool i in time t. For the case of the extensive margin, the ideal 

variable would be the insured share of planted acres, however, this is not observed in the public-

facing version of the SOBTPU. As an alternative, we use the net insured acres (𝑎𝑎𝑖𝑖𝑖𝑖) which we 

calculate as ∑𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖. The number of crop acres for the crop-county designation of pool i, 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐, is 

calculated from the sources indicated above. Other information derived from the SOBTPU for 

each pool included premium per dollar of liability (𝜏𝜏𝑖𝑖𝑖𝑖) defined as the total premium divided by 

total liability, the subsidy per dollar of premium (𝑠𝑠𝑖𝑖𝑖𝑖) defined as the total premium subsidy divided 

by the total premium, and the premium rate paid by the producer (𝑟𝑟𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖). 

The specific insurance pool’s actuarial information (i.e., design parameters for the FCIP) retrieved 

from the ADM includes the county base rate (𝛼𝛼𝑖𝑖𝑖𝑖) and catastrophic fixed loading factor (𝛿𝛿𝑖𝑖𝑖𝑖). For 

a given pool and crop year, the RMA-set continuous rating parameters were taken as their exact 

values retrieved from RMA’s ADM. Given each pool’s insurance unit, the FCIC-set subsidy rate 

for coverage level 𝜃𝜃 (i.e., a measure of aggregate subsidy rate set by policy [𝑠̅𝑠𝜃𝜃,𝑡𝑡]) was derived as 

 
15 For coverage level, the focus is given to only buy-up coverage policies as catastrophic (CAT) policies are essentially 
free (aside from a fixed signup fee charged for enrolling) from the point of view of the producer, and their pricing is 
not tied to the continuous rating formula. Insurance plans designated as a group/area/index policy or as endorsements 
to an underlying policy (i.e., SCO, ECO, and STAX) follow a somewhat different rating formula that is not supported 
by the conceptual framework and identification strategy used in this study. 
16 ADM files for each insurance year are available at [67]. The aggregation of ADM information is based on initial 
work by Tsiboe and Tack (2021) using Beocat, a High-Performance Computing (HPC) cluster at Kansas State 
University. 
17 FSA Crop Acreage Data are available at [68]. 
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the total annual subsidy paid divided by the total premium paid for the respective coverage level 

and insurance unit of the pool. This aggregation was done over only individual yield and revenue 

protection information in the SOBTPU. 

Using the data from the RMA sources above, the expected price was first taken as the projected 

price, if unavailable the established price was used before the harvest price is considered. The 

missing expected price that persists is replaced with the state-crop annual average of the price from 

the first step. Finally, the per-acre cost of crop production was approximated with state-level rental 

rates retrieved from NASS Quick Stats. Missing rental rates were approximated with the 

predictions from a regression of rental rates on land values also retrieved from NASS Quick Stats. 

All monetary values and prices were deflated by the producer price received index (rebased to 

2022) constructed from the received-to-paid price index ratio multiplied by the index for the price 

paid retrieved from NASS Quick Stats.  

Given that the continuous rating formula currently used by RMA came into effect in 2001/2002 

this study is restricted to the period 2001-2022. Furthermore, the analysis is focused on 37 

commodities covered under the FCIP that have; (1) premiums set using continuous rating, (2) 30 

or more pool level observations per crop and crop year combination; and (3) ten or more crop year 

appearances. These commodities along with their sample size are shown on Table S1 in the 

appendix.18 The final data consists of 1,174,932 observations with 178,914 unique insurance pools. 

Figure S4 shows that the annual appearance of an insurance pool in the sample ranged from 1-23 

times with about 80% appearing in more than one crop year and about 40% appearing in ten or 

more crop years. The final data set represents 63% of total insured acreage within the FCIP from 

2001-2022. Similarly, 73% of liabilities, 79% of premiums, 79% of subsidies, and 79% of 

indemnities were represented in the final data set. 

Table 1 shows the descriptive statistics of all variables in the dataset across all the insurance pools. 

On average a pool in the data set had an insured liability of $847,000 with an insured area of 3,497 

acres and a coverage level of 69% purchased at a premium cost of $86,591 of which $52,950 was 

 
18 The crops included almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, flax, 
forage production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, 
pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, 
tomatoes, walnuts, and wheat. 
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paid for by government subsidies. Figure S5 (A) shows that from 2001-2022 insured acres 

[coverage level] decreased [increased] marginally, particularly after the passage of the 2008 farm 

bill. Respectively, the overall mean for premium per dollar of liability and subsidy per dollar of 

premium is $0.137 and $0.608, and figures S5 (C) and (D) show that whilst the former has reduced 

from 2001-2022, the latter has increased over the same period. In terms of the continuous rating 

parameters, Figures S5 (F) and (G) show that the mean base rate and catastrophic fixed loading 

factor have both declined, reflecting the reduction in the overall mean for premium per dollar of 

liability.  

It is worth noting that the assignment of the insurance pools by this study is based on policy 

offerings and RMA’s reporting guidelines and not necessarily on producer risk profiles. The kind 

of producer-level data needed to accomplish this is currently restricted. Ideally one might want to 

ascertain how producer characteristics change from year to year after the pool assignment. RMA 

uses the insured’s average on-farm yields relative to their peers (relative yield) and presumes that 

their risk co-varies with that average. Thus, given the pool-level data, the rating formula in 

Equation (3) is instead used to uncover a representative relative yield for each pool-year 

combination in the sample. The mean of the representative relative yield across all pools for a 

given crop is then used to assess the temporal evolution of risk. This essentially gives a sense of 

how the risk profile as used by RMA is changing from year to year. Figure S6 shows that across 

the entire sample it can be observed that the relative productivity measure used by RMA has 

evolved differently for each crop.  

4. Empirical Model  

Previous studies have used extensive or intensive margin measures of insurance as competing 

representations of the true level of insurance in single equation estimations [15], [17]. Others have 

also presented these measures as recursive in the producer’s insurance decisions [33]. Neither of 

these approaches allows contemporaneous correlation between the producer’s insurance decisions 

at the intensive and extensive margin. This study takes an alternative approach and works from the 

premise that crop insurance decisions at the extensive margin (i.e., net insured acres) and the 

intensive margin (i.e., coverage level) are made together and are likely to be influenced by the 
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same set of unobservables. Thus, our empirical model can be defined by the following system of 

equations19, 

ln𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑎𝑎,0 + 𝛽𝛽𝑎𝑎,𝑟𝑟 ln 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝜷𝜷𝑎𝑎,𝑤𝑤𝒘𝒘𝑖𝑖𝑖𝑖 + 𝑣𝑣𝐴𝐴,𝑖𝑖𝑖𝑖 + 𝜀𝜀𝐴𝐴,𝑖𝑖𝑖𝑖     

ln𝜃𝜃𝑖𝑖𝑖𝑖 = 𝛽𝛽𝜃𝜃,0 + 𝛽𝛽𝜃𝜃,𝑟𝑟 ln 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝜷𝜷𝜃𝜃,𝑤𝑤𝒘𝒘𝑖𝑖𝑖𝑖 + 𝑣𝑣𝜃𝜃,𝑖𝑖𝑖𝑖 + 𝜀𝜀𝜃𝜃,𝑖𝑖𝑖𝑖    

�
𝜎𝜎𝑎𝑎𝑎𝑎 𝜎𝜎𝜃𝜃𝜃𝜃
𝜎𝜎𝑎𝑎𝑎𝑎 𝜎𝜎𝜃𝜃𝜃𝜃� = 𝛴𝛴  where   𝜎𝜎𝑘𝑘𝑘𝑘 = cov�𝜀𝜀𝑘𝑘,𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑙𝑙,𝑖𝑖𝑖𝑖�     (12) 

where the net insured acreage, 𝑎𝑎𝑖𝑖𝑖𝑖, and the average coverage level, 𝜃𝜃𝑖𝑖𝑖𝑖 , are modeled as a function 

of the same set of covariates which include the producer-paid premium rate, 𝑟𝑟𝑖𝑖𝑖𝑖 and a vector of 

control variables, 𝒘𝒘𝑖𝑖𝑖𝑖, which contains the log expected price for the 𝑖𝑖𝑡𝑡ℎ pool’s crop, log planted 

acres for the respective crop for the 𝑖𝑖𝑡𝑡ℎ pool’s county, the rental rate for land for the 𝑖𝑖𝑡𝑡ℎ pool’s 

state, crop-specific time trends, and year-fixed effects. The term 𝑣𝑣𝑘𝑘,𝑖𝑖𝑖𝑖 captures crop-insurance pool 

fixed effects. The error term for each equation, 𝜀𝜀𝑘𝑘,𝑖𝑖𝑖𝑖 , is assumed to have an expected value of zero 

but can be heteroskedastic and autocorrelated since the data is an unbalanced panel. Thus, standard 

errors are clustered using two-way clustering by year and insurance pool to allow for 𝜀𝜀𝑘𝑘,𝑖𝑖𝑖𝑖 to be 

spatially correlated within each year and temporally correlated within each pool [42]–[44]. Since 

all the variables are in natural logarithms, the estimated coefficient for ln 𝑟𝑟𝑖𝑖𝑖𝑖, {𝛽̂𝛽𝜃𝜃,𝑟𝑟, 𝛽̂𝛽𝑎𝑎,𝑟𝑟} can be 

interpreted as demand elasticities at the {intensive, extensive} margin to changes in the producer-

paid premium rate. It also follows that the total demand elasticity for total protection (combined 

protection at both margins) is given by 𝛽̂𝛽𝑎𝑎,𝑟𝑟 + 𝛽̂𝛽𝜃𝜃,𝑟𝑟 + 𝛽̂𝛽𝜃𝜃,𝑟𝑟𝛽̂𝛽𝑎𝑎,𝑟𝑟. 

Estimating the empirical model for the entire sample provides average elasticity estimates for all 

producers in the FCIP. However, aggregating across all crops and regions could be misleading 

since policy offerings differ across commodities and counties.20 If the demand response to changes 

in producer-paid premium rate was subject to significant spatial or commodity-specific 

heterogeneity, high-level aggregated estimates would mask this variation. Given the large sample 

 
19 Estimation of the extensive and intensive margin simultaneously is necessary to make our model theoretically 
consistent with the fact that both extensive and intensive margin decisions are required to completely define a policy. 
Estimating demand for insurance as two separate processes would generate bias. This is most obvious in the case 
where a budget constraint is binding in which case increasing insurance demand at the extensive margin would 
necessarily results in a proportional decrease in demand and the intensive margin (and vice versa). 
20 For example, while some commodities have both revenue and yield protection available, some of the crops 
represented in our dataset have only yield protection insurance available. 
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size available, additional estimation is conducted to assess how the demand elasticities change 

along the defining characteristics of each insurance pool (i.e., commodity, policy type, production 

practice, etc.) to assess potential heterogeneity in the elasticities. This is accomplished by allowing 

ln 𝑟𝑟𝑖𝑖𝑖𝑖 to shift with the levels within each insurance pool characteristic (achieved by the inclusion 

of interaction terms between ln 𝑟𝑟𝑖𝑖𝑖𝑖 and each value of the characteristics being considered [𝑫𝑫𝑖𝑖𝑖𝑖]). 

For these estimations, our empirical model was modified as, 

ln𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑎𝑎,0 + 𝜷𝜷𝑎𝑎,𝑑𝑑,𝑟𝑟(𝑫𝑫𝑖𝑖𝑖𝑖 × ln 𝑟𝑟𝑖𝑖𝑖𝑖) + 𝜷𝜷𝑎𝑎,𝑤𝑤𝒘𝒘𝑖𝑖𝑖𝑖 + 𝑣𝑣𝐴𝐴,𝑖𝑖𝑖𝑖 + 𝜀𝜀𝐴𝐴,𝑖𝑖𝑖𝑖  

ln𝜃𝜃𝑖𝑖𝑖𝑖 = 𝛽𝛽𝜃𝜃,0 + 𝜷𝜷𝜃𝜃,𝑑𝑑,𝑟𝑟(𝑫𝑫𝑖𝑖𝑖𝑖 × ln 𝑟𝑟𝑖𝑖𝑖𝑖) + 𝜷𝜷𝜃𝜃,𝑤𝑤𝒘𝒘𝑖𝑖𝑖𝑖 + 𝑣𝑣𝜃𝜃,𝑖𝑖𝑖𝑖 + 𝜀𝜀𝜃𝜃,𝑖𝑖𝑖𝑖    

�
𝜎𝜎𝑎𝑎𝑎𝑎 𝜎𝜎𝜃𝜃𝜃𝜃
𝜎𝜎𝑎𝑎𝑎𝑎 𝜎𝜎𝜃𝜃𝜃𝜃� = 𝛴𝛴  where   𝜎𝜎𝑘𝑘𝑘𝑘 = cov�𝜀𝜀𝑘𝑘,𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑙𝑙,𝑖𝑖𝑖𝑖�     (13) 

Although producers presumably focus on the out-of-pocket cost (i.e., the producer paid premium 

rate, 𝑟𝑟𝑖𝑖𝑖𝑖), when making insurance decisions, it is possible that the base premium rate (before 

subsidization) is the relevant metric if their menu of insurance contracts is presented to them at 

pre-subsidized rates. As such, an alternative specification is estimated that uses the premium per 

dollar of liability (ln 𝜏𝜏𝑖𝑖𝑖𝑖) as the primary independent variable while excluding the subsidy rate 

from the estimation. Another possibility (although rather unlikely) is that producers pay attention 

to the subsidy rate, but not the premium rate when making insurance decisions. For completeness, 

a specification is included that represents this situation (i.e., the inclusion of subsidy rate as an 

independent variable and exclusion of the premium per dollar of liability). 

Finally, to analyze heterogeneity in the demand response to changes in out-of-pocket costs of crop 

insurance (which could be achieved via changes in subsidy rate) conditional on the initial (i.e., the 

current) subsidy rate, a series of categorical variables are used that capture the current range of the 

subsidy per dollar of premium (𝑠𝑠𝑖𝑖𝑖𝑖) faced by the producers. The levels of the categorical variables 

are defined in 3% bins (i.e., I [0.55 < 𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 0.58] = 1 defines a pool that currently faces a 55%-

58% subsidy rate). Pools with 𝑠𝑠𝑖𝑖𝑖𝑖 above 80% were rare, thus, the categorical variable for 𝑠𝑠𝑖𝑖𝑖𝑖 at and 

above 80% were combined into a single indicator. Similarly, 𝑠𝑠𝑖𝑖𝑖𝑖 at 40% and below were also 

combined. The demand elasticity for each bin is estimated by allowing the ln 𝑟𝑟𝑖𝑖𝑖𝑖 to shift with the 

levels within the categorical variable (achieved by interacting each indicator with ln 𝑟𝑟𝑖𝑖𝑖𝑖 in the 

empirical model). 
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5. Identification Strategy 

As was previously mentioned, several sources of endogeneity exist in the empirical framework 

utilized by this study. The first stems from the fact that variation observed in the key independent 

variable, producer paid premium rate (𝑟𝑟𝑖𝑖𝑖𝑖)20F

21, is partly driven by the distribution of risk for a given 

insurance pool and producer’s production choices which makes it potentially endogenous to the 

net insured acres and coverage level – i.e. an insurance pool with a greater risk of prompting an 

indemnity payment has a higher premium rate for a given crop insurance choice. At the same time, 

producers tend to self-select out of riskier pools by allocating fewer acres to crops associated with 

such pools, or fewer acres to any crop in a county characterized by a greater risk profile, ceteris 

paribus [19]. In other words, crop insurance risk pools suffer from a classic adverse selection 

problem in which riskier pools tend to consist of producers who opt to insure more acreage, at 

higher coverage levels presumably because of their privately known production risk profile that is 

not easily observable by rate-setters. 

The assumed specification of the empirical model is incorrect because it omits “risk” an 

independent variable that influences decisions on how much acreage to enroll and at what coverage 

level to insure. Consequently, risk is correlated with the subsidy rate and premium rate yet is 

unobserved meaning the producer-paid premium rate is correlated with the error term.22 In addition 

to “risk” being omitted from the estimating equation, the study must also contend with the 

simultaneous determination between insurance decisions and the out-of-pocket cost of insurance. 

As noted by Woodard and Yi (2020), the relationship between coverage and paid premiums forms 

 
21 i.e., the product of the subsidy per dollar of premium (𝑠𝑠𝑖𝑖𝑖𝑖) and the premium per dollar of liability (𝜏𝜏𝑖𝑖𝑖𝑖) 
22 As a reminder, the subsidy rate is correlated with the premium rate under the subsidy rate being a function of chosen 
coverage level with subsidy rates decreasing as the coverage level increases (Figure S7). 
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an upward-sloping demand curve as a matter of actuarial construction if premiums are used as the 

“price” variable since higher levels of coverage necessitate higher premiums to maintain actuarial 

soundness. All this is to say that choosing to estimate the empirical model via ordinary least 

squares (OLS) or as a seemingly unrelated regression will produce biased estimates. Another 

potential source of omitted variable bias is the dependence of 𝑠𝑠𝑖𝑖𝑖𝑖 and 𝜏𝜏𝑖𝑖𝑖𝑖 on the choice of insurance 

unit. However, pools include insurance units as one of the pooling factors meaning this issue is 

addressed by the inclusion of pool fixed effects which control for time-invariant risk that differs 

by the pool. Endogeneity concerns are addressed by using the policy rating parameters set by RMA 

to instrument for producer-paid premiums.  

As discussed in section 2, the RMA rating parameters are updated each year to maintain the 

actuarial soundness of the FCIP. Although these rating parameters are updated in part based on 

past actuarial performance, they remain exogenous to any one producer’s decisions by virtue of 

several RMA rating practices. First, RMA employs what they refer to as “credibility weighting” 

which is their term for a spatial smoothing algorithm that seeks to attenuate large discontinuities 

in crop insurance pricing along county borders (Risk Management Agency [RMA] 2009; Coble et 

al. 2010). Credibility weighting also serves to down-weight the loss experience of counties that 

are highly variable (in which case the loss experience of neighboring counties is used more heavily 

in the rate making process). In effect, this means that a single producer’s county base rate is based 

on all producers of the same commodity within their county and all the producers of the same 

commodity in all adjoining counties. Consequently, the influence that a single producer has on the 

future base rate that they face is negligible. 23 In addition to credibility weighting which spatially 

 
23 The average number of crop insurance policies associated with a county-crop-year group (ex: policies associated 
with corn producers in Monroe County, Iowa in 2018 would constitute one group) between 2000-2021 is 147. This 
means there are 147 crop insurance policies that contribute to the average county’s loss experience that influences the 
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smooths county base rates, RMA also updates rating parameters on a three-year cycle using 

historic loss experience data from the previous 20 years starting from two crop years before the 

current [update] crop year. This also imposes additional temporal separation between the decisions 

of a producer and the county base rate they face. Due to the common practice of multi-crop 

rotations, rotational grazing, or letting fields lay fallow, the group of producers that purchase crop 

insurance for a certain commodity each year will face a base rate influenced by the outcomes of a 

different group (although unlikely to be entirely disjoint) of producers. Lastly, RMA retains the 

right to use their professional judgement to subjectively rate crop insurance policies (Coble et al. 

2010) which provides an additional buffer between a producer’s behavior and their county base 

rate.  

This approach is like Woodard and Yi (2020), who, to the best of our knowledge, is the only prior 

study to address the simultaneity between premium rates and coverage decisions. While they also 

use rating parameters as instruments, their approach to arriving at these instruments is different 

from what is used in this study. The major difference is that they use observed aggregate level data 

to estimate from a latent rate curve, an instrument that mimics the relationship between RMA's 

rate differential factors and coverage level to capture curvature in the premium schedule. One 

limitation of doing so is that any error in the estimation of the rating parameters could be translated 

into an error in their final elasticity estimates. Additionally, by estimating rating parameters using 

observed aggregate level data, a causal link is established between producer coverage decisions 

and the instruments used to generate, presumably, exogenous variation in premium rates. Thus, a 

 
county base rate. When credibility weighting is considered, the average county has an additional 769 policies in 
adjoining counties that can influence the county base rate. In other words, the owners of approximately 900 policies 
(or at least a large portion of those) would need to collude to intentionally influence their county base rate. 



19 
 

potential source of simultaneity remains in the empirical framework.24 Alternatively, the approach 

used in this study makes use of observed RMA-rating parameters that captures the initial level of 

premiums (i.e., the intercept of the premium schedule) to generate instruments that eliminate any 

direct influence between producer insurance decisions and the instrumental variables.25  

Several studies have shown that instrumental variable estimators (IV) based on a large set of 

instruments may have undesirable properties [45]–[49] with a recent paper showing that in many 

micro-econometric applications, just identified IV is an appropriate identification strategy with 

bias that is minimal compared to high dimensional approaches [50]. Furthermore, empirically, 

using all potential instruments is computationally intractable. Consequently, instead of using all 

the rating parameters as separate instruments, we opt for the case of just identified IV by 

assimilating them into a single source of exogenous influence for the premium rate faced by each 

producer. Specifically, we use the base premium rate for a 65% coverage level for the average 

farm in a county (i.e., 𝑦𝑦� 𝑦𝑦�𝑐𝑐⁄ = 1) which we calculate as 𝜏𝜏𝑖𝑖𝑖𝑖,65 = 𝛼𝛼�𝑖𝑖𝑖𝑖�𝑦𝑦��𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦��𝑐𝑐𝑐𝑐𝑐𝑐� �𝛽𝛽
�
𝑖𝑖𝑖𝑖 + 𝛿𝛿�𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑖𝑖𝑖𝑖 + 𝛿𝛿�𝑖𝑖𝑖𝑖. 

This represents the initial premium rate (i.e., the intercept of the premium schedule) for a producer 

which is the sum of the county base rate with an additive catastrophic loading factor applied. 26 In 

 
24 For example, if producers who choose low levels of coverage tend to have fundamentally different actual production 
histories (which are used by RMA to set premiums) compared to producers who choose high levels of coverage, then 
the producers’ coverage level choices would be correlated with the curvature of the observed rate curve. In other 
words, in this example, the rate curve derived from observed data would not maintain the same curvature if the 
producers choosing high coverage levels alternatively choose low coverage levels and vice versa. Thus, any estimated 
instruments are dependent on the insurance decisions of the producers. Consequently, the producer insurance decisions 
indirectly influence the estimated effect of premium rates on producer insurance decisions by way of the estimated 
instruments. 
25 Woodard and Yi (2020) conduct a series of simulations to show that using observed rating parameters eliminates 
the simultaneity bias but switches to using estimated rating parameters in their estimation of elasticities.  
26 A fixed catastrophic loading factor is applied to account for the fact that extreme tail events are not often observed 
in historical data making it more difficult to confidently derive actuarial sound rates. The loading factor serves as a 
buffer in the case where rare events are more probable than their historical occurrences would suggest. 
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other words, 𝜏𝜏𝑖𝑖𝑖𝑖,65, represents the cost of insurance before any adjustment is made based on the 

insured producer’s past production history, insurance coverage level, or unit structure election. 

To instrument for the subsidy per dollar of premium (𝑠𝑠𝑖𝑖𝑡𝑡), the study adopts a strategy previously 

used by Yu et al. (2018) whose identification strategy is premised on the fact that changes in 

legislation create a structural break that shifts the suite of subsidy rates exogenously in a way that 

is not driven by endogenous factors related to crop production. Thus, to instrument for 𝑠𝑠𝑖𝑖𝑖𝑖 the study 

follows Yu et al. (2018) and uses the aggregate subsidy rate for yield protection and revenue 

protection for 65% (𝑠̅𝑠65,𝑡𝑡) and 75% (𝑠̅𝑠75,𝑡𝑡) coverage levels associated with each pool’s insurance 

unit.27 In this application, a single instrument is defined as the mean of Yu et al. (2018)’s 

instruments �𝑠̅𝑠𝑡𝑡 = �𝑠̅𝑠65,𝑡𝑡 + 𝑠̅𝑠75,𝑡𝑡� 2⁄ �. Finally, to instrument for the producer paid premium rate, which 

is the endogenous variable in the preferred empirical specification, the two previous described 

instruments are interacted (𝑟̅𝑟𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑖𝑖,65 × 𝑠̅𝑠𝑡𝑡) to capture exogenous variation in the producer paid 

premium generated from both RMA set policy parameters and structural shifts in congressionally 

approved subsidy rate changes.  

6. Results 

Table 2 shows estimated results for the system defined in equation (12). Columns (1) and (2) report 

the estimation results with instruments via three-stage least squares (3SLS) with and without 

Fixed-Effect (FE), respectively while column (3) reports the results without instrumenting. The F-

statistics separately computed for each endogenous variable are well above the thresholds 

 
27 The 65 and 75 percent coverage levels are the most popular coverage level choices and have been available for 
several decades making a natural choice to use as instruments (Yu et al. 2018). 
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suggested by Stock and Yogo (2005) indicating that weak instruments are not a statistically 

obvious concern.  

Concerning the equation representing demand at the intensive margin, the preferred model [Model 

1: FE-3SLS] has an estimated coefficient for the paid premium rate that is smaller in magnitude 

and of the opposite sign when compared to the non-instrumented model [Model 3: FE-OLS] which 

highlights the consequences of failing to correct for endogeneity in the empirical specification. 

Model 1 (FE-3SLS) also indicates that the effect of paid premium rate is roughly half as large 

relative to model 2 (3SLS without fixed effects). Results based on extensive margin demand do 

not indicate a significant relationship between paid premium rate and insurance demand when both 

instrumental variables and fixed effects are applied (Model 1). Instrumenting without fixed effects 

(Model 2) suggests a positive relationship between paid premium rate and insured acres while 

applying fixed effects in the absence of instrumental variables (Model 3) suggests the opposite 

effect. Models 4 and 5 estimate the effects of premiums and subsidies in isolation. Both 

specifications have signs consistent with theory (i.e., increasing premiums attenuate demand while 

increasing subsidies augment demand). However, as previously discussed, these specifications are 

not as credible given that producers are unlikely to act on premiums or subsidies alone, but rather 

their interaction which governs their out-of-pocket cost.  

The results from the preferred model (3SLS with fixed effects) show that the covariance between 

crop insurance at the intensive and extensive margins is positive (0.003) suggesting factors that 

increased demand at the intensive margin also increases demand at the extensive margin, and vice 

versa. However, this cross-demand effect is not symmetric. A one percent increase in demand at 

the intensive margin increases extensive margin demand by about 0.005% while a percent increase 

in demand at the extensive margin increases intensive margin demand by about 0.772%. We also 
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observe that the producer-paid premium rate drives crop insurance demand at the extensive margin 

more than at the intensive margin, albeit, with increased statistical uncertainty due to large standard 

errors. Particularly, for a percent increase in paid premium rates, the net insured acres, and chosen 

coverage level decrease by 0.052 and 0.022%, respectively. These elasticities cumulate into a 

decrease in total demand elasticity for total protection (combined protection at both margins) of -

0.074 for a percent increase in paid premium rates.  

Allowing the estimated demand elasticities to vary with the underlying initial subsidy rate suggests 

that the demand response to premium subsidies varies based on the initial subsidy rate (illustrated 

in Figure 2). Notably, demand at the intensive margin responds either positively or negatively to 

changes in the out-of-pocket cost of insurance with the difference being conditional on the current 

subsidy level. With a premium subsidy of less than or equal to 40%, a percent increase in the paid 

premium rate leads to a 0.054% reduction in the coverage level whereas demand increases by 

0.074% when initial subsidy rates are over 80%. Intensive margin demand exhibits no change with 

respect to changes in out-of-pocket costs when subsidy levels are in the range of 59-60%. 

However, intensive margin outcomes are only a single component of total demand. With respect 

to the extensive margin, demand elasticities are negative through most of the range of subsidy 

levels and generally become less elastic as subsidy rates approach zero. Total demand (the 

combination of changes at the extensive and intensive margin) indicates that demand responds 

negatively for most initial subsidy levels and remains roughly constant (mean of -0.08%) for 

subsidy levels below 70%.28 

 
28 The exceptions are elasticities derived from respondents with subsidy rates higher than 80% and a single bin for 
subsidy rates of 80-90%, both of which have rather small sample sizes. 
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Observed Heterogeneity   

Figures 3-6 report elasticities based on changes in the paid premium rate and a premium per dollar 

of liability across various observable characteristics.29 These include commodity produced, 

irrigation practices, organic certification, insurance policy type, insurance unit, coverage level, and 

resource region. Figure 3 panel A reports separately estimated elasticities for each insured 

commodity. Estimates for demand at the intensive margin are all negative (or have 95% confidence 

intervals inclusive of 0). Extensive margin demand indicates varied demand responses however 

most are statistically insignificant – the exceptions being negative responses for olives (-1.900), 

apples (-0.682), grapes (-0.491), flax (-0.425), wheat (-0.394), sweet corn (-0.379), tobacco (-

0.325), peanuts (-0.204) with a positive response observed for oranges (1.088) and grain sorghum 

(0.328). For the intensive margin, 17 commodities had negative and significant elasticities ranging 

from tobacco (-0.014) to canola (-0.067); and only one, tomatoes (0.050), had a positive significant 

elasticity. Total protection responses generally mirror extensive margin elasticities due to that of 

the extensive margin being larger in magnitude than those derived at the intensive margin.  

Differences persist across irrigation status as well (Figure 4A). Non-irrigated practice units have 

statistically significant and negative elasticities at the intensive margin (-0.034) but have a 

statistically insignificant response at the extensive margin (0.128). The opposite is true for irrigated 

units (insignificant response in coverage level [-0.001] and statistically significant reduction in 

insured acreage [-0.345]). Concerning organic classification (Figure 4B), certified organic 

producers have responses (-0.037, -0.540, and -0.556 for intensive, extensive, and total, 

respectively) to changes in the cost of insurance that are negative, statistically significant, and 

 
29 The methodology used to derive figure 3 is the same approach used in figure 2. Indicator variables that segment the 
sample across some series of observable characteristics (e.g., corn producers, wheat producers, etc.) are included in 
the empirical specification and interacted with the relevant measure of insurance cost. 
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larger in magnitude relative to the general pool of producers. This suggests organic producers may 

be particularly sensitive to increases in the cost of crop insurance relative to other production 

practices which may help explain the gap in demand for insurance between organic and 

conventional producers that have been observed in existing literature [52]. 

Decomposing results by crop insurance protection type (Figure 5A) suggests that pools with an 

insurance policy protecting against a shortfall in revenue react with a significant decrease in total 

coverage (-0.556) with respect to changes in the cost of insurance. Insurance pools characterized 

by yield protection policies also produce negative elasticities at the intensive margin (-0.009) but 

lack statistical significance. Differences across policy types at the extensive margin are more 

pronounced with revenue protection policies producing negative and statistically significant 

elasticities (-0.540) whereas pools using yield protection policies exhibit statistically significant 

and positive elasticities (0.480). Notably, when heterogeneity in the extensive margin demand 

response across protection types is ignored, the aggregate response to changes in the paid premium 

rate is statistically indistinguishable from zero due to the competing effects across different 

protection types that cancel out. 

Within the FCIP, insurance unit structures are groups of acreage that are insured under a common 

policy. Enterprise units encompass all a producer’s insurable acreage producing the same crop in 

the same county whereas basic and optional units consist of smaller subdivisions of acreage each 

of which can have a different policy. Given that enterprise units eliminate the possibility of adverse 

selection and distribute risk across large geographic areas, electing to insure under an enterprise 

unit means the resulting policy is subject to a larger premium subsidy rate and a lower premium 

rate as shown by Figure S2. Decomposing results by insurance unit (Figure 5B) suggests that 

enterprise units do not significantly alter coverage levels in response to increasing insurance costs 
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whereas pools characterized by basic and optional units both have statistically significant and 

negative elasticities of comparable magnitudes; -0.027 and -0.032, respectively. Alternatively, at 

the extensive margin, pools based on enterprise units produce an elasticity (-0.432) that is 

statistically significant and below zero while basic units and optional units generate statistically 

insignificant elasticities.  

Within the FCIP, the subsidy rate varies by coverage levels which can incentivize different 

responses to increased insurance costs that are conditional on a producer’s current coverage level 

(this is discussed in more detail in the next section). Figure 6A decomposes estimated elasticities 

by grouping insurance pools based on the coverage level within the pool that has the most 

insurance acreage (i.e., if the plurality of acreage in an insurance pool is insured at the 75% 

coverage level, that entire pool is assigned to the 75% group for purposes of the estimation that 

produces Figure 6A). At the intensive margin, ordering insurance pools by estimated elasticity 

perfectly orders them by coverage level starting with the 85% coverage level producing the most 

negative elasticity (-0.054) and the 50% coverage level producing the largest positive elasticity 

(0.051). At the extensive margin, a similar ordering is observed, but differences in magnitude are 

not as pronounced and not generally statistically significant.  

Figure 6B breaks down estimated elasticities based on ERS farm resource regions [53]. Estimated 

elasticities are generally negative with respect to demand at both the intensive and extensive 

margins. Given that commodities in the U.S. are typically grown in spatially clustered regions, 

much of the variation in estimates reported in Figure 6B can likely be at least partially attributed 

to variation in the commodity being produced.  
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Robustness Checks 

To assess the reliability of our results presented in table 2, we conduct several robustness checks. 

First, insurance pools, as defined by this study, involved the aggregation of policies of different 

coverage levels into one measure of intensive margin demand. In our forgoing model this 

aggregation was done by using an insured acreage weighted average of the constituent coverage 

levels of a given pool �𝜃𝜃𝑖𝑖𝑖𝑖 = 1
∑𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖

∑�𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖��. In Table S2 we present results based on alternative 

measures of intensive margin demand. Column 1 represents the acreage weighted average 

coverage level (used in the primary analysis). Column 2 measures intensive margin demand using 

the ratio of liability to total potential liability defined as �∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖� �∑
𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖

�� ; where, 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 are 

the coverage level and total liability for the jth entry associated with pool i in time t. The total 

potential liability �∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖

� represents all liability that could conceivably be insured holding the 

year’s enrolled acreage and current producers fixed. Column 3 measures intensive margin demand 

by taking a simple average of the coverage level (i.e., equal weight as opposed to the acreage 

weighted measure in column 1). Finally, column 4 defines the coverage level by identifying which 

coverage level contains the highest number of acres and using that coverage level as the sole 

measure of intensive margin demand. The measure in column 4 can thus be thought of as a modal 

coverage level. In every alternative measure of intensive margin demand, results are quantitatively 

equivalent to those from our primary analysis. 

Our next robustness check is based on the notion that crop rotations could influence our estimates 

of demand at the extensive margin. For example, in the case of a two-year corn-soy rotation, we 

may expect insured acres in an insurance pool to routinely vary based on which crop is currently 

being planted. To address this, we include the 1-year lag of insured acres into the extensive margin 
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equation, the rationale being that if crop rotations influence insured acres than the lag of insured 

acres should be negatively correlated with the insured acres in the current year. Results from this 

specification are presented in table S3. The one-year lag had a positive and significant influence 

on insured acres indicating a failure to find evidence that crop rotations were influencing current 

year insured acres. The conclusions from this alternative specification are qualitatively equivalent 

to our main specification; intensive margin demand elasticities are relatively inelastic and negative 

while elasticities from the extensive margin equation are statistically insignificant. Additional 

specifications are estimated using lags of the county planted acres as a proxy measure of county-

wide patterns in rotation. The positive and significant influence of the one-year lag of insured acres 

on current insured acres, was confirmed by up to two lags in county planted acres. The demand 

elasticities conclusions from these alternative specifications are also qualitatively equivalent to our 

main specification (Table S3). 

To assess whether increasing availability of crop insurance could have influenced our results via 

incentivizing land use decisions, we conduct a robustness check using only county-crop pairs that 

had FCIP policies available for the entirety of our study periods. Results from this exercise can be 

found in Table S4 in the supplementary materials. Overall, we find qualitatively equivalent results 

relative to the full sample. Temporal robustness checks using Farm Bill periods and a structural 

break in 2012 (corresponding to a rise in popularity of revenue protection policies), to assess 

temporal heterogeneity and potential variation due to different farm policy environments yielded 

estimated elasticities for all time periods that were statistically indistinguishable from our main 

results (see Figure S8). 

7. Policy Implications 
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The elasticities representing the responsiveness of crop insurance demand to paid premium rates 

that are estimated in this study are at the lower bound of those from existing literature. Particularly, 

Barnett et al. (1990) used crop-county wheat observations in 1987 to show that acreage insured, 

and bushels insured decreased by 0.23% and 0.18% for a percentage increase in premium rate. 

Goodwin (1993) used crop-county corn observations in Iowa from 1985-1990 to show that insured 

acres and liability per planted acre decreased by 0.32% and 0.73% for a percentage increase in 

producer premium paid per acre. Using farm-level observations, Goodwin and Kastens (1993) and 

Coble et al. (1996) showed that crop insurance demand respectively decreased by 0.51% and 

0.65% for a percent increase in premium rate. Yu et al. (2018) found that crop insurance subsidies 

increased planted acreage by 0.43%. By examining crop insurance choices of specialty crop 

growers, Yu et al. (2018), showed that lower expected returns from Buy-up products which are 

relatively expensive and have low subsidy rates lead to more CAT participation which is basically 

free.  

In the same spirit as this paper, Woodard and Yi (2020) showed that crop insurance elasticities at 

the intensive margin with respect to changes in premium rate ranged from -0.64 to 1.890 and noted 

that estimated elasticities were around 3–5 times greater in magnitude under an instrumental 

variable regression framework than under OLS. In this study, the 3SLS estimated demand response 

at the extensive [intensive] margin to paid premium rates is approximately 0.69 [0.26] times that 

of the OLS estimated elasticities. To the extent that the estimates from the intensive margin 

equation reflect that of Woodard and Yi (2020), the results in this study do not support their 

assertion that the mistreatment of endogeneity is likely partly responsible for pervasive findings 

of inelastic insurance demand in the FCIP. Several differences in research design could account 

for the disconnect between this study and Woodard and Yi (2020). Notable amongst these is that 
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this study considers jointly both crop insurance demand at the intensive and extensive margins in 

one estimation that allows for both direct and indirect effects. This study uses policy set 

instruments that represents the initial level of premiums (i.e., the intercept of the premium 

schedule) producers face when buying a policy while the instruments used by Woodard and Yi 

(2020) were estimated from a latent rate curve the capture curvature in the premium schedule. 

Finally, this study uses annual insurance pool level data spanning (2001-2022) while that of 

Woodard and Yi (2020) is based on annual county-level aggregated data from 1999-2014. Policy 

set FCIP design parameters shown in Figure S5 indicate that starting in 2001 RMA has 

progressively been altering its rating parameters. Thus, the results in this study and that of 

Woodard and Yi (2020) could be capturing, at different spatial resolutions, different iterations of 

the FCIP from a policy standpoint, with ours reflecting a more modern version of the FCIP at the 

most granular level possible with publicly available data.  

Calculating demand elasticities, conditional on a 2% subsidy range, suggests that the demand 

response at both the extensive and intensive margin to paid premium rates becomes increasingly 

inelastic as premium subsidies decline (see Figure 2). This marked dependence of crop insurance 

demand response on premium subsidies explains the relatively low magnitude of the elasticity 

estimate in this study when compared to existing estimates. Past studies are primarily based on the 

FCIP as it was in the mid-1990s which is very different from the contemporary FCIP (post-2000) 

that this study covers. Notably, the periods analyzed in this study correspond with a period of a 

considerable increase in government subsidies. Since the demand response becomes increasingly 

inelastic with increased premium subsidy levels it should not be surprising that this study suggests 

a more inelastic demand response compared to most existing studies. These findings echo the 

sentiments of Smith and Baquet (1996) who used individual farm data and assessed the impacts 
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on price elasticities of demand as expected returns from crop insurance purchases approach zero, 

either from below or above, and found that elasticities of demand increase as expected payoffs 

from the contract approach zero. Since expected returns from crop insurance decrease with subsidy 

reduction, the insights from Smith and Baquet (1996) offer a plausible mechanism for observing 

the dependence of crop insurance demand response on premium subsidies.  

The consistent finding that elasticities decrease in magnitude as subsidy rates approach zero is also 

consistent with economic theory related to decision-making under risk and uncertainty. As 

subsidies increase the expected payoff, and by extension the expected utility, of purchasing crop 

insurance is likely to be positive for a wider range of producer risk preferences. 30 Decreasing 

subsidy rates (and in turn increasing the out-of-pocket cost to the producer) lowers the expected 

utility of a given insurance contract. However, if subsidy rates are sufficiently high enough for it 

to be rational to purchase insurance under levels of risk aversion that are much lower than what is 

commonly observed, then the decreasing subsidy rate would not be expected to alter most 

producers’ purchasing decisions.  

In the context of policy proposals to reduce FCIP premium subsidies (Congressional Budget 

Office, 2017; Congressional Budget Office [CBO], 2020), our estimates of demand at the intensive 

margin suggest a 1 percent increase in paid premium rate would correspond to a 0.23% decrease 

in aggregate coverage levels. Excluding livestock policies, the 2021 crop year had total FCIP 

premiums of $13.41 billion, $8.41 billion in premium subsidies, and $4.92 billion in producer paid 

premiums corresponding to a subsidy rate of 62.7% at the program level. At these levels, our 

results suggest that a 1 percent decrease in subsidies, equivalent to 1.7 percent decrease in producer 

 
30 This is true for all risk-averse individuals but does not hold for any potential producers that exhibit risk-loving 
behavior. 
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paid premiums, would correspond to a decrease in insured liability of approximately $502 million. 

However, observed heterogeneity in results suggest that these decreases in liability are unlikely to 

be evenly distributed across FCIP participants. 

Decomposing estimated demand elasticities by insurance pool characteristics revealed that the 

response to changes in the out-of-pocket cost of crop insurance can vary dramatically depending 

on the characteristics of the insurance policy, and by extension producer characteristics. From a 

policy perspective, this is an important consideration depending on the goal of the policy. For 

example, our aggregate level estimates suggest a null result between a change in the out-of-pocket 

cost of insurance (which could be achieved by a change in the subsidy rate schedule) and the 

insured share of acreage. However, decomposing results by crop insurance policy type indicated 

that this null result was at least partially attributable to insurance pools characterized by revenue 

protection (RP) policies having an opposing effect (of similar magnitudes) to yield protection (YP) 

policies. This suggests that an increase in the subsidy rate within the FCIP may prompt a shift 

away from RP policies to YP policies. This is intuitive as RP policies offer more comprehensive 

protection, but also have higher premiums compared to YP policies. For a producer that is subject 

to higher out-of-pocket costs due to a decrease in the subsidy rate schedule, switching from an RP 

policy to a YP policy could be a rational way to offset the increase in total insurance costs. From 

a policy perspective, this is noteworthy. Even though our aggregate level estimates suggest that 

the change in demand from subsidy rate decrease would be small, a potential shift away from RP 

policies would effectively reduce protection against price risk – something that is not captured in 

typical measures of crop insurance demand but may be important depending on the goals of a 

policy maker. 
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Several differences in the demand response to changes in crop insurance costs could be attributable 

to how subsidy rates are set within the FCIP. Notably, subsidy rates differ based on the insurance 

unit (enterprise, optional, and basic) as well as with the chosen coverage level. Enterprise units, 

which encompass more acreage in a single unit, have higher subsidy rates since they are less prone 

to adverse selection and can geographically distribute risk better than basic or optional units. 

Concerning coverage levels, policies with higher coverage levels receive lower subsidy rates while 

lower coverage levels receive higher subsidy rates. These differences are depicted in figure S7 

where 1) enterprise units have higher subsidy rates than basic or optional units, and 2) subsidy 

rates for basic and optional units continue to increase all the way down to the 50% coverage level 

whereas all coverage levels for enterprise units at or below 70% receive the same 80% subsidy 

rate.  

The variation in subsidy rates creates different incentives for producers faced with a rise in out-of-

pocket insurance costs (either due to subsidy rate decreases or changes in the premium rating 

calculation) depending on initial insurance allocation at the time of the change. For example, 

producers with high coverage levels can lower coverage levels and increase their insured share of 

acreage to achieve a similar level of overall protection, but by lowering their coverage level they 

can take advantage of higher subsidy rates. This same strategy for limiting overall insurance costs 

is not available if producers are already at a low coverage level and are thus already receiving the 

most favorable subsidy rate available – in such a case reducing protection at the extensive margin 

may be the only way to reduce overall insurance costs. Decomposing results based on the 

predominant coverage level within each pool (Figure 6A) indicated that higher coverage levels 

had more elastic demand at the intensive margin – a result that is consistent with the mechanism 

described above. Similarly, enterprise units were found to have less elastic intensive margin 
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demand compared to basic or enterprise units (Figure 5B) likely reflecting the fact that the 

marginal benefit of reducing coverage (in terms of obtaining a higher subsidy rate) is zero for 

coverage levels below 75%. Thus, producers insured under enterprise units may have stronger 

incentives to reduce demand at the extensive margin to reduce overall crop insurance costs. We 

found evidence consistent with this claim in the form of pools defined by enterprise units having 

more elastic demand at the extensive margin. 

Finally, several publications have identified issues of moral hazard in the context of agricultural 

insurance markets [55]–[59]. The results presented here offer deeper insights into how various 

segments of producers respond to changes in the cost of insurance. This could potentially help 

identify, a priori, how future changes in agricultural insurance subsidies may reorganize the 

relative ratio of insured to uninsured producers among various market segments and help identify 

where crop insurance may compete with (and crowd out demand for) other risk mitigation 

strategies or where other risk mitigation strategies may be more alluring than crop insurance (in 

the case of a subsidy rate decrease for example). 

8. Conclusion 

Despite the determinants of crop insurance demand receiving significant research interest over the 

last several decades, a consensus on the demand response likely to stem from changes in the out-

of-pocket cost of crop insurance has not been reached. Much of the early work estimating crop 

insurance demand elasticities did so without addressing the endogeneity inherent in the FCIP data 

sources. Additionally, major changes in the FCIP in the early 2000s raised questions as to whether 

it is prudent to generalize results drawn from earlier work to the modern crop insurance era, 

regardless of any endogeneity concerns. 
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Utilizing 1,174,872 insurance pool level observations from the FCIP, spanning the last 22 years, 

this study contributes to the literature that seeks to estimate a causal relationship between crop 

insurance premium subsidies and crop insurance demand in the context of the modern FCIP policy 

landscape. The study set up a two-equation structural model of insurance demand that captures 

responses at the intensive margin (as measured by crop insurance coverage level) and the extensive 

margin (as measured by net insured acres). The empirical model is estimated using three-stage 

least squares (3SLS), making use of instruments derived from RMA continuous rating parameters 

that are exogenous with respect to a given producer’s crop insurance purchasing decisions. The 

results indicate that demand for crop insurance is inelastic at both the extensive and intensive 

margins with respect to changes in producer-paid premium rates. With respect to changes in 

premium subsidy rates, demand at both the extensive and intensive margins increase. Extending 

the analysis across a range of potential premium rates suggests that the demand response to 

premium rates is dependent on the level of premium subsidies with the response becoming 

increasingly elastic as premium subsidy levels approach zero. However, decomposing results by 

observable insurance pool characteristics suggest that various subsets of producers are likely to 

have very different reactions to the same change in the cost of crop insurance.  

Despite addressing multiple sources of potential estimation bias, there are several additional 

caveats worth considering which include the exclusion of the price election share (an additional 

choice insured make), accommodating endogenous production input use, and reliance on 

aggregated data (i.e., observation units representing multiple producers). Subsequent studies could 

overcome these shortcomings by expanding the scope of this study to include the price election 

share as an additional choice variable or consider the effects of insurance on production input use 

and vice versa. Additionally, the analysis showed that the riskiness of the insurance pools in the 
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sample based on RMA standards changes over time. Future studies could explore the assignment 

of pools such that each pool’s riskiness essentially remains constant over time. However, it should 

be noted that the availability of producer-level panel data required for a more granular level 

analysis is quite limited if not restricted. Notwithstanding these caveats, the demand response 

estimates in relation to changes in the cost of insurance in this study are potentially useful for 

developing a comprehensive understanding of crop insurance demand and informing policy 

discussions on the use of crop insurance subsidy changes as a measure to promote crop insurance 

uptake. 
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Tables and Figure  

Table 1: Means and Standard Deviations of US Federal Crop Insurance Pools (2001/22) 

Variables Mean  
(Standard deviation) 

Coverage level �𝜃𝜃�𝑖𝑖𝑖𝑖� 0.688 (0.078) 
Net insured area (acres) (𝑎𝑎�𝑖𝑖𝑖𝑖) 3496.807 (10747.413) 
County-crop area (1,000 acres) (𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐) 59.623 (99.361) 
Total liability ($ 1,000) �∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖� [𝐴𝐴] 846.768 (3225.961) 
Total premium paid ($ 1,000) [𝐵𝐵] 86.591 (304.982) 
Total premium subsidy paid ($ 1,000) [𝐶𝐶] 52.950 (197.443) 
Premium per dollar of liability (𝜏𝜏𝑖𝑖𝑖𝑖 = 𝐵𝐵 𝐴𝐴⁄ )  0.137 (0.098) 
Subsidy per dollar of liability premium (𝑠𝑠𝑖𝑖𝑖𝑖 = 𝐶𝐶 𝐵𝐵⁄ ) 0.608 (0.088) 
Producer paid premium rate (𝑟𝑟𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖) 0.083 (0.062) 
Base rate (𝛼𝛼�𝑖𝑖𝑖𝑖) 0.098 (0.084) 
Catastrophic fixed loading factor �𝛿𝛿𝑖̅𝑖𝑖𝑖� 0.029 (0.015) 
Rate for 65% coverage �𝜏𝜏𝑖𝑖𝑖𝑖,65 = 𝛼𝛼�𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖̅𝑖𝑖𝑖� 0.126 (0.093) 
65% coverage subsidy rate �𝑠̅𝑠65,𝑡𝑡� 0.632 (0.084) 
75% coverage subsidy rate �𝑠̅𝑠75,𝑡𝑡� 0.597 (0.087) 
65 and 75% coverage subsidy rate �𝑠̅𝑠𝑡𝑡 = �𝑠̅𝑠65,𝑡𝑡 + 𝑠̅𝑠75,𝑡𝑡� 2⁄ � 0.615 (0.085) 
Preferred instrument �𝑟̅𝑟𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑖𝑖,65 × 𝑠̅𝑠𝑡𝑡� 0.077 (0.058) 
Mean normalized projected price 0.665 (0.417) 
Rent ($/acre) 73.475 (42.390) 
Number of insurance pools 178,914 
Number of observations 1,174,932 

Note: An insurance pool is defined as the unique combinations of crops (almonds, apples, barley, blueberries, cabbage, 
canola, corn, cotton, dry beans, dry peas, flax, forage production, fresh nectarines, grain sorghum, grapes, millet, oats, 
olives, onions, oranges, peaches, peanuts, pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, 
sugarcane, sunflowers, sweet corn, tobacco, tomatoes, walnuts, and wheat), county, insurance unit (optional units 
[OU], basic units [BU], or enterprise units [EU]), insurance plan, irrigation practice (irrigated, non-irrigated, or 
unspecified), and organic practice (organic certified, organic transition, or unspecified). The data was constructed by 
the authors using primary data from (1) Risk Management Agency’s summary of business files that contain insurance 
metrics aggregated by county, crop, crop type, production practice, insurance plan, coverage level, insurance unit, 
actuarial data master, and price addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. 
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Table 2: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22)  
Variables (1) †† (2) (3) (4) (5) 

Coverage level (𝐥𝐥𝐥𝐥 𝜽𝜽𝒊𝒊𝒊𝒊) 
     

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.022*** (0.003) -0.040*** (0.003) 0.085*** (0.004) - - 
Premium per dollar of liability (ln 𝜏𝜏𝑖𝑖𝑖𝑖)  - - - -0.028*** (0.003) - 
Subsidy per dollar of premium (ln 𝑠𝑠𝑖𝑖𝑖𝑖) - - - - 0.161*** (0.011) 
County planted acres 0.001*** (0.000) 0.006*** (0.000) 0.002*** (0.001) 0.001*** (0.000) 0.002*** (0.000) 
State rental rate for land 0.001 (0.007) 0.031*** (0.001) 0.010 (0.006) 0.000 (0.007) 0.003 (0.007) 
Expected crop price -0.011** (0.005) -0.005** (0.002) -0.014*** (0.004) -0.010** (0.005) -0.012*** (0.004) 

Insured acres (𝐥𝐥𝐥𝐥 𝒂𝒂𝒊𝒊𝒊𝒊) 
     

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.052 (0.075) 0.082*** (0.015) -0.076* (0.042) - - 
Premium per dollar of liability (ln 𝜏𝜏𝑖𝑖𝑖𝑖)  - - - -0.194*** (0.028) - 
Subsidy per dollar of premium (ln 𝑠𝑠𝑖𝑖𝑖𝑖) - - - - 5.907*** (0.322) 
County planted acres 0.460*** (0.019) 0.477*** (0.019) 0.459*** (0.019) 0.459*** (0.018) 0.464*** (0.018) 
State rental rate for land -0.028 (0.072) -0.034*** (0.009) -0.029 (0.074) -0.038 (0.073) 0.004 (0.082) 
Expected crop price 0.141*** (0.036) -0.572*** (0.036) 0.142*** (0.037) 0.146*** (0.037) 0.127*** (0.045) 

Total protection response      
Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.074 (0.074) 0.038** (0.017) 0.003 (0.046) - - 
Premium per dollar of liability (ln 𝜏𝜏𝑖𝑖𝑖𝑖)  - - - -0.216*** (0.028) - 

Covariance matrix  
     

𝜎𝜎𝑎𝑎𝑎𝑎  0.543 3.029 0.543 0.545 0.665 
𝜎𝜎𝜃𝜃𝜃𝜃  0.004 0.013 0.003 0.004 0.004 
𝜎𝜎𝜃𝜃𝜃𝜃  0.003 0.027 0.003 0.004 0.018 

Estimator FE-3SLS 3SLS FE-OLS FE-3SLS FE-3SLS 
Number of observations 1174932 1174932 1174932 1174932 1174932 
Number of insurance pools 178914 178914 178914 178914 178914 
Weak-instrument: F-statistics      
Preferred instrument �ln 𝑟̅𝑟𝑖𝑖𝑖𝑖 = ln�𝜏𝜏𝑖𝑖𝑖𝑖,65 × 𝑠̅𝑠𝑡𝑡�� 280652.424*** 1789606.241*** - - - 
Rate for 65% coverage �ln 𝜏𝜏𝑖𝑖𝑖𝑖,65� - - - 210607.806*** - 
65 and 75% coverage subsidy rate (ln 𝑠̅𝑠𝑡𝑡) - - - - 59974.623*** 

Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the intensive and extensive margins measured by coverage level and 
insured acres. An insurance pool is defined as the unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, flax, forage 
production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, 
sugarcane, sunflowers, sweet corn, tobacco, tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), insurance plan, 
irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, organic transition, or unspecified). The data used was constructed by the authors 
using primary data from (1) Risk Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, crop type, production practice, 
insurance plan, coverage level, and insurance unit, actuarial data master, and price addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. The preferred 
model is ††. Significance levels - *p<0.1 ** p<0.05, ***p<0.01. Standard errors in parentheses are clustered by insurance pool and year.  
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Figure 1: Crop Insurance Policy, Participation and Product Diversity, and Availability  

 

Notes: Constructed by the authors using data from (1) Risk Management Agency’s summary of business 

files, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats.  
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Figure 2: US Federal Crop Insurance Pool’s Demand Response Conditional on Premium 

Subsidy (2001/22) 

 

Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the 
intensive and extensive margins measured by coverage level and insured acres. An insurance pool is defined as the 
unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, 
flax, forage production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, 
pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, 
tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), 
insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, 
organic transition, or unspecified). The data used was constructed by the authors using primary data from (1) Risk 
Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, crop 
type, production practice, insurance plan, coverage level, and insurance unit, actuarial data master, and price 
addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. 
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Figure 3: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance 

Pool Commodity (2001/22) 

 

Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the 
intensive and extensive margins measured by coverage level and insured acres. An insurance pool is defined as the 
unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, 
flax, forage production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, 
pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, 
tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), 
insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, 
organic transition, or unspecified). The data used was constructed by the authors using primary data from (1) Risk 
Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, crop 
type, production practice, insurance plan, coverage level, and insurance unit, actuarial data master, and price 
addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. 
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Figure 4: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance 

Pool Production Practices (2001/22) 

 

Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the 
intensive and extensive margins measured by coverage level and insured acres. An insurance pool is defined as the 
unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, 
flax, forage production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, 
pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, 
tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), 
insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, 
organic transition, or unspecified). The data used was constructed by the authors using primary data from (1) Risk 
Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, crop 
type, production practice, insurance plan, coverage level, and insurance unit, actuarial data master, and price 
addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. 
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Figure 5: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance 

Pool Protection Type and Unit Structure (2001/22) 

 
Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the 
intensive and extensive margins measured by coverage level and insured acres. An insurance pool is defined as the 
unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, 
flax, forage production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, 
pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, 
tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), 
insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, 
organic transition, or unspecified). The data used was constructed by the authors using primary data from (1) Risk 
Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, crop 
type, production practice, insurance plan, coverage level, and insurance unit, actuarial data master, and price 
addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. 
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Figure 6: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance 

Pool Coverage Level and Location (2001/22) 

  
Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the 
intensive and extensive margins measured by coverage level and insured acres. An insurance pool is defined as the 
unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, 
flax, forage production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, 
pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, 
tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), 
insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, 
organic transition, or unspecified). The data used was constructed by the authors using primary data from (1) Risk 
Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, crop 
type, production practice, insurance plan, coverage level, and insurance unit, actuarial data master, and price 
addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. 
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Appendix A: Supplementary Materials  

Table S1: Sample size by crops 

Crop Sample size 
Almonds 671 
Apples 6,536 
Barley 34,094 
Blueberries 2,068 
Cabbage 589 
Canola 7,868 
Corn 332,862 
Cotton 72,012 
Dry beans 4,495 
Dry peas 10,407 
Flax 1,490 
Forage production 17,536 
Fresh nectarines 429 
Grain sorghum 13,044 
Grapes 17,132 
Millet 2,049 
Oats 26,599 
Olives 502 
Onions 2,092 
Oranges 640 
Peaches 2,675 
Peanuts 21,935 
Pears 756 
Plums 529 
Potatoes 4,797 
Rice 11,981 
Rye 825 
Safflower 1,165 
Soybeans 297,905 
Sugar beets 2,695 
Sugarcane 557 
Sunflowers 22,842 
Sweet corn 2,852 
Tobacco 4,856 
Tomatoes 1,075 
Walnuts 606 
Wheat 243,766 
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Table S2: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22) 

– Robustness to Intensive Margin Measures. 

Variables 
(Acre Weighted  

Average) †† 
(Liability/Total  

Potential liability) 
(Simple  

Average) 
(Dominant  

Coverage Level) 

Coverage level (𝐥𝐥𝐥𝐥 𝜽𝜽𝒊𝒊𝒊𝒊) 
    

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.022*** (0.003) -0.023*** (0.003) -0.021*** (0.002) -0.023*** (0.003) 

Insured acres (𝐥𝐥𝐥𝐥 𝒂𝒂𝒊𝒊𝒊𝒊) 
    

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.052 (0.075) -0.052 (0.075) -0.052 (0.075) -0.052 (0.075) 
Total protection response     
Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.074 (0.074) -0.074 (0.074) -0.072 (0.073) -0.074 (0.074) 
Estimator FE-3SLS FE-3SLS FE-3SLS FE-3SLS 
Number of observations 1174932 1174932 1174932 1174932 
Number of insurance pools 178914 178914 178914 178914 
Weak-instrument: F-statistics 280652.424*** 280652.424*** 280652.424*** 280652.424*** 

Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the intensive and 
extensive margins measured by coverage level and insured acres. An insurance pool is defined as the unique combinations of crops 
(almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, flax, forage production, fresh nectarines, 
grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, pears, plums, potatoes, rice, rye, safflower, soybeans, 
sugar beets, sugarcane, sunflowers, sweet corn, tobacco, tomatoes, walnuts, and wheat), county, insurance unit (optional units 
[OU], basic units [BU], or enterprise units [EU]), insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and 
organic practice (organic certified, organic transition, or unspecified). The data used was constructed by the authors using primary 
data from (1) Risk Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, 
crop type, production practice, insurance plan, coverage level, and insurance unit, actuarial data master, and price addendums, (2) 
Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. The preferred model is ††. Significance levels - *p<0.1 ** 
p<0.05, ***p<0.01. Standard errors in parentheses are clustered by insurance pool and year.  
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Table S3: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22) – Robustness to Planted Acreages  
Variables (1) ††  (6) (7) (8) (9) (10) 

Coverage level (𝐥𝐥𝐥𝐥𝜽𝜽𝒊𝒊𝒊𝒊) 
       

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.022*** (0.003) -0.007** (0.004) -0.023*** (0.003) -0.023*** (0.003) -0.023*** (0.003) -0.023*** (0.003) -0.023*** (0.003) 
One crop year lag of insured acres - 0.000 (0.001) - - - - - 
County planted acres        

Current crop year 0.001*** (0.000) 0.002*** (0.001) 0.002*** (0.000) 0.002*** (0.000) 0.002*** (0.000) 0.002*** (0.000) 0.002*** (0.000) 
One crop year lag - - -0.001* (0.001) -0.001* (0.001) -0.001* (0.001) -0.001* (0.001) -0.001* (0.001) 
Two crop year lag - - - 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 
Three crop year lag - - - - 0.000 (0.001) 0.000 (0.001) 0.000 (0.001) 
Four crop year lag - - - - - 0.000 (0.000) 0.000 (0.000) 
Five crop year lag - - - - - - 0.000 (0.000) 

Insured acres (𝐥𝐥𝐥𝐥 𝒂𝒂𝒊𝒊𝒊𝒊) 
       

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.052 (0.075) -0.021 (0.071) -0.052 (0.076) -0.051 (0.076) -0.051 (0.076) -0.050 (0.076) -0.050 (0.076) 
One crop year lag of insured acres - 0.237*** (0.041) - - - - - 
County planted acres        

Current crop year 0.460*** (0.019) 0.455*** (0.028) 0.450*** (0.020) 0.450*** (0.020) 0.450*** (0.020) 0.450*** (0.020) 0.450*** (0.020) 
One crop year lag - - 0.028** (0.011) 0.019 (0.012) 0.019 (0.012) 0.019 (0.012) 0.019 (0.012) 
Two crop year lag - - - 0.022** (0.009) 0.021** (0.009) 0.021** (0.009) 0.021** (0.008) 
Three crop year lag - - - - 0.002 (0.006) 0.005 (0.006) 0.005 (0.006) 
Four crop year lag - - - - - -0.006 (0.005) -0.007 (0.005) 
Five crop year lag - - - - - - 0.001 (0.005) 

Total protection response        
Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.074 (0.074) -0.028 (0.071) -0.073 (0.074) -0.072 (0.074) -0.072 (0.074) -0.072 (0.074) -0.072 (0.074) 
Estimator FE-3SLS FE-3SLS FE-3SLS FE-3SLS FE-3SLS FE-3SLS FE-3SLS 
Number of observations 1174932 902849 1174895 1174835 1174777 1174697 1174618 
Number of insurance pools 178914 165035 178914 178905 178898 178887 178870 
Weak-instrument: F-statistics 280652.424*** 209511.253*** 280403.566*** 280285.517*** 280405.173*** 280345.169*** 280204.736*** 

Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the intensive and extensive margins measured by coverage level and 
insured acres. An insurance pool is defined as the unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, flax, forage 
production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, 
sugarcane, sunflowers, sweet corn, tobacco, tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), insurance plan, 
irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, organic transition, or unspecified). The data used was constructed by the authors 
using primary data from (1) Risk Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, crop type, production practice, 
insurance plan, coverage level, and insurance unit, actuarial data master, and price addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. The preferred 
model is ††. Significance levels - *p<0.1 ** p<0.05, ***p<0.01. Standard errors in parentheses are clustered by insurance pool and year.  
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Table S4: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22) 

– Robustness to Crop Insurance Availability. 
Variables (1) †† (11) 

Coverage level (𝐥𝐥𝐥𝐥 𝜽𝜽𝒊𝒊𝒊𝒊) 
  

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.022*** (0.003) -0.021*** (0.003) 

Insured acres (𝐥𝐥𝐥𝐥 𝒂𝒂𝒊𝒊𝒊𝒊) 
  

Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.052 (0.075) 0.038 (0.115) 
Total protection response   
Paid premium rate (ln 𝑟𝑟𝑖𝑖𝑖𝑖 = ln[𝜏𝜏𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑖𝑖𝑖𝑖]) -0.074 (0.074) 0.016 (0.113) 
Estimator FE-3SLS FE-3SLS 
Number of observations 1174932 604248 
Number of insurance pools 178914 85014 
Weak-instrument: F-statistics 280652.424*** 132240.849*** 

Notes: Crop insurance demand is modeled via a multi-equation structural model of crop insurance demand at the intensive and 
extensive margins measured by coverage level and insured acres. An insurance pool is defined as the unique combinations of crops 
(almonds, apples, barley, blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, flax, forage production, fresh nectarines, 
grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, pears, plums, potatoes, rice, rye, safflower, soybeans, 
sugar beets, sugarcane, sunflowers, sweet corn, tobacco, tomatoes, walnuts, and wheat), county, insurance unit (optional units 
[OU], basic units [BU], or enterprise units [EU]), insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and 
organic practice (organic certified, organic transition, or unspecified). The data used was constructed by the authors using primary 
data from (1) Risk Management Agency’s summary of business files that contain insurance metrics aggregated by county, crop, 
crop type, production practice, insurance plan, coverage level, and insurance unit, actuarial data master, and price addendums, (2) 
Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. The preferred model is ††. Significance levels - *p<0.1 ** 
p<0.05, ***p<0.01. Standard errors in parentheses are clustered by insurance pool and year.  
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Figure S1: US Federal Crop Insurance Program (FCIP) Rate Differential Factor (2001/22) 

 

Notes: Constructed by the authors using data from the Risk Management Agency’s Actuarial Data Master. 

In the FCIP, the coverage level differential factor scales the premium rate due to an insured by their elected 

coverage level. 
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Figure S2: US Federal Crop Insurance Program (FCIP) Unit Residual Factor (2001/22) 

 

Notes: Constructed by the authors using data from the Risk Management Agency’s Actuarial Data Master. 
In the FCIP, the coverage level differential factor scales the premium rate due to an insured by their elected 
insurance unit. For crop-specific policies, there are three broad choices for insurance units. The first is basic 
units (BU) where the insurance unit is determined by crop and the insured’s share in the crop, i.e., operations 
for owned, cash, or share rented are insured as separate BU policies. The second, optional units (OU) are a 
further division of basic units which allows each field to be insured separately. The third is enterprise units 
(EU) where the insurance unit is the combination of all the insured’s insurable acreage for the same crop in 
the same county, i.e., combining all the insured’s basic or optional units. 
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Figure S3: US Federal Crop Insurance Program (FCIP) Subsidy Factor (2001/20) 

 

Notes: Constructed by the authors using data from Risk Management Agency’s Actuarial Data Master. In 

the FCIP, insurance premiums are subsidized at a rate that is tied to coverage level and insurance unit and 

not to location or crop. 
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Figure S4: US Federal Crop Insurance Pool Annual Appearance (2001/22) 

 

Notes: An insurance pool is defined as the unique combinations of crops (almonds, apples, barley, 
blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, flax, forage production, fresh nectarines, 
grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, pears, plums, potatoes, rice, 
rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, tomatoes, walnuts, and 
wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), insurance 
plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, 
organic transition, or unspecified). The data used was constructed by the authors using primary data from 
the Risk Management Agency’s summary of business files that contain insurance metrics aggregated by 
county, crop, crop type, production practice, insurance plan, coverage level, and insurance unit. 
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Figure S5: Variation in US Federal Crop Insurance Pool Variables (2001/22) 

 

Note: An insurance pool is defined as the unique combinations of crops (almonds, apples, barley, 
blueberries, cabbage, canola, corn, cotton, dry beans, dry peas, flax, forage production, fresh nectarines, 
grain sorghum, grapes, millet, oats, olives, onions, oranges, peaches, peanuts, pears, plums, potatoes, rice, 
rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, tobacco, tomatoes, walnuts, and 
wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), insurance 
plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, 
organic transition, or unspecified). The data was constructed by the authors using primary data from (1) 
Risk Management Agency’s summary of business files that contain insurance metrics aggregated by 
county, crop, crop type, production practice, insurance plan, coverage level, insurance unit, actuarial data 
master, and price addendums, (2) Farm Service Agency’s crop acreage data, and (3) NASS Quick Stats. 



58 
 

Figure S6: Evolution of US Federal Crop Insurance Pool Riskiness Based on Risk 

Management Agency’s (RMA) Standards (2001/21) 

 

Note: An insurance pool is defined as the unique combinations of crops (almonds, apples, barley, blueberries, cabbage, canola, 
corn, cotton, dry beans, dry peas, flax, forage production, fresh nectarines, grain sorghum, grapes, millet, oats, olives, onions, 
oranges, peaches, peanuts, pears, plums, potatoes, rice, rye, safflower, soybeans, sugar beets, sugarcane, sunflowers, sweet corn, 
tobacco, tomatoes, walnuts, and wheat), county, insurance unit (optional units [OU], basic units [BU], or enterprise units [EU]), 
insurance plan, irrigation practice (irrigated, non-irrigated, or unspecified), and organic practice (organic certified, organic 
transition, or unspecified). RMA uses the insured’s average on-farm yields relative to their peers and presumes that their risk co-
varies with that average. Thus, given the pool-level data, the study instead used RMA’s rating formula to uncover a representative 
rate yield for each pool-year combination in the sample. For each crop and practice, the study then uses this representative rate 
yield to assess the temporal evolution of each pool's relative performance amongst similar pools in each year. The data was 
constructed by the authors using primary data from the Risk Management Agency’s summary of business files that contain 
insurance metrics aggregated by county, crop, crop type, production practice, insurance plan, coverage level, insurance unit, 
actuarial data master, and price addendum. 
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Figure S7: 2022 FCIP subsidy rates by insurance unit and coverage level. 

 

Note: Subsidy rates reported are those for revenue protection, revenue protection with harvest price exclusion, and yield protection 
policies based on RMA’s actuarial data master available at: https://ftp.rma.usda.gov/pub/References/actuarial_data_master/  

  

 

 

 

 

 

 

 

 

https://ftp.rma.usda.gov/pub/References/actuarial_data_master/
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Figure S8: US Federal Crop Insurance Pool’s Demand Response Conditional on Structural 

Breaks (2001/22) 

 

 

 

 

 

 


	Acknowledgments
	1. Introduction
	2. Conceptual Framework
	3. Data
	4. Empirical Model
	5. Identification Strategy
	6. Results
	Observed Heterogeneity
	Robustness Checks

	7. Policy Implications
	8. Conclusion
	References
	Tables and Figure
	Table 1: Means and Standard Deviations of US Federal Crop Insurance Pools (2001/22)
	Table 2: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22)
	Figure 1: Crop Insurance Policy, Participation and Product Diversity, and Availability
	Figure 2: US Federal Crop Insurance Pool’s Demand Response Conditional on Premium Subsidy (2001/22)
	Figure 3: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance Pool Commodity (2001/22)
	Figure 4: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance Pool Production Practices (2001/22)
	Figure 5: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance Pool Protection Type and Unit Structure (2001/22)
	Figure 6: US Federal Crop Insurance Pool’s Demand Response Conditional on Insurance Pool Coverage Level and Location (2001/22)

	Appendix A: Supplementary Materials
	Table S1: Sample size by crops
	Table S2: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22) – Robustness to Intensive Margin Measures.
	Table S3: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22) – Robustness to Planted Acreages
	Table S4: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22) – Robustness to Crop Insurance Availability.
	Figure S1: US Federal Crop Insurance Program (FCIP) Rate Differential Factor (2001/22)
	Figure S2: US Federal Crop Insurance Program (FCIP) Unit Residual Factor (2001/22)
	Figure S3: US Federal Crop Insurance Program (FCIP) Subsidy Factor (2001/20)
	Figure S4: US Federal Crop Insurance Pool Annual Appearance (2001/22)
	Figure S5: Variation in US Federal Crop Insurance Pool Variables (2001/22)
	Figure S6: Evolution of US Federal Crop Insurance Pool Riskiness Based on Risk Management Agency’s (RMA) Standards (2001/21)
	Figure S7: 2022 FCIP subsidy rates by insurance unit and coverage level.
	Figure S8: US Federal Crop Insurance Pool’s Demand Response Conditional on Structural Breaks (2001/22)


